[1] CHEN J Y, LIU J G, HE Y B, et al. Temperature measurement of CO2 by use of a distributed-feedback diode laser sensor near 2.0μm[J]. Chinese Journal of Lasers, 2012, 39(11): 1108004(in Chin-ese). doi: 10.3788/CJL201239.1108004
[2] LINNERUD I, KASPERSEN P, JAEGER T. Gas monitoring in the process industry using diode laser spectroscopy[J]. Applied Physics, 1998, B67(3): 297-305.
[3] TEICHERT H, FERNHOLZ T, EBERT V. Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers[J]. Applied Optics(AIAA), 2003, 42(12): 2043-2051.
[4] PALAGHITA T I, SEITZMAN J M. Absorption based temperature distribution sensing for combustor diagnostics and control[C]// 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: American Institute of Aeronautics and Astronautics(AIAA), 2006: 0430.
[5] LIU T C, JEFFRIES J B, HANSON R K. Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows[J]. Applied Physics, 2004, B78(3): 503-511.
[6] TEICHERT H, FERNHOLZ T, EVERT V. In situ measurement of CO, H2O and gas temperature in a lignite-fired power-plant[C]//8th Topical Meeting on Laser Applications to Chemical and Environmental Analysis (8th LACEA). Washington DC, USA: Optical Society of America (OSA), 2002: ThB3.
[7] PHOLIPPE L C, HANSON R K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows[J]. Applied Optics, 1993, 32(30): 6090-6103. doi: 10.1364/AO.32.006090
[8] CHYANG L S, STRAND C L, JEFFERIES J B, et al. Supersonic mass-flux measurements via tunable diode laser absorption and nonuniform flow modeling[J]. AIAA Journal, 2011, 49(12): 2783-2791. doi: 10.2514/1.J051118
[9] WANG G Y, HONG Y J, PAN H, et al. Diode laser absorption sensor for measurements of temperature and velocity in supersonic flow[J]. Acta Optica Sinica, 2013, 33(9): 0912009 (in Chinese). doi: 10.3788/AOS201333.0912009
[10] CHRISTOPHER S, GOLDNSTEIN, IAN A, et al. Tunable diode laser absorption sensor for measurements of temperature and water concentration in supersonic flows[C]// 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, USA: AIAA, 2011: 1-94.
[11] LU W Y, ZHU X R, LI Y S, et al. Comparison of direct absorption and wavelength modulation methods for online measurement of CO2 by TDLAS[J]. Infrared and Laser Engineering, 2018, 47(7): 717002(in Chinese). doi: 10.3788/IRLA201847.0717002
[12] ZHAI Ch, YAN J, WANG X N, et al. The instrument research on high temperature measurement based on the tunable diode laser absorption spectroscopy[J]. Opto-Electronic Engineering, 2015, 42(8): 86-90(in Chinese).
[13] SUN P S, ZHANG Zh R, CUI X J, et al. Multipath real-time measurement of temperature and H2O concentration for combustion diagnosis[J]. Chinese Journal of Lasers, 2015, 42 (9): 915002(in Chinese). doi: 10.3788/CJL201542.0915002
[14] GILLET B, HARDALUPAS Y, KAVOUNIDES C, et al. Infrared absorption for measurement of hydrocarbon concentration in fuel air mixtures[J]. Applied Thermal Engineering, 2004, 24(11/12): 1633-1653.
[15] BUSA K M, ELLISION E N, McGOVERN B J, et al. Measurements on NASA langley durable combustor rig by TDLAT preliminary results[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, USA: AIAA, 2013: 0696.
[16] MA L, CAI W W. Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging[J]. Applied Optics, 2008, 47(21): 3751-3759. doi: 10.1364/AO.47.003751
[17] CAI W W, MA L. Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flow[J]. Applied Optics, 2010, 49(4): 601-610. doi: 10.1364/AO.49.000601
[18] HUANG J Q, LIU H C, DAI J H, et al. Reconstruction for limited-data nonlinear tomography absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 218: 187-193.
[19] YU T, CAI W W, LIU Y Z. Rapid tomography reconstruction based on machine learning for time-resolved combustion diagnostics[J]. Review of Scientific Instruments, 2017, 89(4): 043101.
[20] QIU X B, WEI J L, SUN D Y, et al. A miniaturized laser measurement instrument of ammonia escaping from coal-fired power plants[J]. Laser Technology, 2019, 43(5): 697-701(in Chinese).
[21] SHAO L G, QIU X B, WEI J L, et al. Multipass absorption spectroscopy based on calibration-free wavelength modulation[J]. Laser Technology, 2019, 43(6): 795-799(in Chinese).