[1] |
申德振, 梅增霞, 梁会力, 等. 氧化锌基材料、异质结构及光电器件[J]. 发光学报, 2014, 35(1): 1-60.SHEN D Zh, MEI Z X, LIANG H L, et al. ZnO-based material, heterojunction and photoelctronic device[J]. Chinese Journal of Luminescence, 2014, 35(1): 1-60(in Chinese). |
[2] |
黄丰, 郑伟, 王梦晔, 等. 氧化锌单晶生长、载流子调控与应用研究进展[J]. 人工晶体学报, 2021, 50(2): 209-243.HUANG F, ZHENG W, WANG M Y, et al. Development of zinc oxide: Bulk crystal growth, arbitrary regulation of carrier concentration and practical applications[J]. Journal of Synthetic Crystals, 2021, 50(2): 209-243(in Chinese). |
[3] |
谢修为, 李炳辉, 张振中, 等. 点缺陷调控: 宽禁带Ⅱ族氧化物半导体的机遇与挑战[J]. 物理学报, 2019, 68(16): 167802.XIE X W, LI B H, ZHANG Zh Zh, et al. Point defects: Key issues for Ⅱ-oxides wide-bandgap semiconductors development[J]. ActaPhysicasinica, 2019, 68(16): 167802(in Chinese). |
[4] |
JANOTTI A, van de WALLE C G. Native point defects in ZnO[J]. Physical Review, 2007, B76(16): 165202. |
[5] |
KURBANOV S S, PANIN G N, KANG T W. Spatially resolved investigations of the emission around 3.31 eV (A-line) from ZnO nanocrystals[J]. Applied Physics Letters, 2009, 95(21): 211902. doi: 10.1063/1.3264084 |
[6] |
SUSHAMA S, MURKUTE P, GHADI H, et al. Enhancement in structural, elemental and optical properties of boron-phosphorus Co-doped ZnO thin films by high-temperature annealing[J]. Journal of Luminescence, 2021, 238: 118221. doi: 10.1016/j.jlumin.2021.118221 |
[7] |
SHIRRA M, SCHNEIDER R, REISER A, et al. Stacking fault related 3.31 eV luminescence at 130 meV acceptors in zinc oxide[J]. Physical Review, 2008, B77(12): 125215. |
[8] |
WANG Q, YAN Y Zh, ZENG Y, et al. Free-standing undoped ZnO microtubes with rich and stable shallow acceptors[J]. Scientific Reports, 2016, 6: 27341. |
[9] |
WANG Q, YAN Y Zh, ZENG Y, et al. Experimental and numerical study on growth of high-quality ZnO single-crystal microtubes by optical vapor supersaturated precipitation method[J]. Journal of Crystal Growth, 2017, 468: 638-644. |
[10] |
WANG Q, YAN Y Zh, QIN F F, et al. A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and micro-fluidic photodegradation[J]. NPG Asia Materials, 2017, 9: e442. |
[11] |
XING C, LIU W, WANG Q, et al. Current-induced thermal tunneling electroluminescence in a single highly compensated semiconductor microrod[J]. Iscience, 2020, 23(6): 101210. |
[12] |
PAN Y M, YAN Y Zh, WANG Q, et al. Efficient defect control of zinc vacancy in undoped ZnO microtubes for optoelectronic applications[J]. Journal of Applied Physics, 2022, 131(10): 105105. |
[13] |
秦莉, 张喜田, 梁瑶, 等. 氧化锌微米花的共振拉曼和"负热淬灭"效应[J]. 物理学报, 2006, 55(6): 3120-3121.QIN L, ZHANG X T, LIANG Y, et al. Resonant Raman scattering and "negative thermal quenching" of ZnO microflowers[J]. Acta Physica Sinica, 2006, 55(6): 3120-3121(in Chinese). |
[14] |
王强, 杨立学, 刘北云, 等. 本征富受主型ZnO微米管光致发光的温度调控机制[J]. 物理学报, 2020, 69(19): 197701.WANG Q, YANG L X, LIU B Y, et al. Thermal regulation mechanism of photoluminescence in intrinsic acceptor-rich ZnO microtube[J]. Acta Physica Sinica, 2020, 69(19): 197701(in Chinese). |
[15] |
CUSCO R, ALARCON-LLADO E, IBANEZ J, et al. Temperature dependence of Raman scattering in ZnO[J]. Physical Review, 2007, B75(16): 165202. |
[16] |
SIMA M, MIHUT L, VASILE E, et al. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy[J]. Thin Solid Films, 2015, 590: 141-147. |
[17] |
ZHAO J, YAN X Q, YANG Y, et al. Raman spectra and photoluminescence properties of In-doped ZnO nanostructures[J]. Materials Letters, 2010, 64(5): 569-572. |
[18] |
TAY Y Y, SUN C Q, CHEN P. Size dependence of Zn 2p 3/2 binding energy in nanocrystalline ZnO[J]. Applied Physics Letters, 2006, 88(17): 173118. |
[19] |
CHEN M, WANG X, YU Y H, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films[J]. Applied Surface Science, 2000, 158(1-2): 134-140. |
[20] |
侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究[J]. 物理学报, 2014, 63(14): 147101.HOU Q Y, G Sh Q, ZHAO Ch W. First-principle study of the effects of oxygen vacancy on the electronic structure and the absorption spectrum of ZnO[J]. Acta Physica Sinica, 2014, 63(14): 147101(in Chinese). |
[21] |
TU N, VAN BUI H, TRUNG D Q, et al. Surface oxygen vacancies of ZnO: A facile fabrication method and their contribution to the photoluminescence[J]. Journal of Alloys and Compounds, 2019, 791: 722-729. |
[22] |
PRZEZDZIECKA E, KAMINSKA E, PASTERNAK I, et al. Photoluminescence study of p-type ZnO∶Sb prepared by thermal oxidation of the Zn-Sb starting[J]. Physical Review, 2007, B76(19): 193303. |
[23] |
赵涛, 李清山, 董艳锋, 等. 氧压对PLD制备掺铜ZnO薄膜光学性质的影响[J]. 激光技术, 2011, 35(6): 781-783. doi: 10.3969/j.issn.1001-3806.2011.06.016ZHAO T, LI Q Sh, DONG Y F, et al. Effect of oxygen pressure on optical properties of Cu-doped ZnO thin films prepared by PLD[J]. Laser Technology, 2011, 35(6): 781-783(in Chinese). doi: 10.3969/j.issn.1001-3806.2011.06.016 |
[24] |
霍艳丽, 李少兰, 马自侠. 溶液浓度对ZnO纳米棒形貌和发光的影响[J]. 激光技术, 2012, 36(6): 776-779. doi: 10.3969/j.issn.1001-3806.2012.06.016HU Y L, LI Sh L, MA Z X. Effect of solution concentration on the morphology and photoluminescence of ZnO nanorods[J]. Laser Technology, 2012, 36(6): 776-779(in Chinese). doi: 10.3969/j.issn.1001-3806.2012.06.016 |
[25] |
CONRADT J, SARTOR J, THIELE C, et al. Catalyst-free growth of zinc oxide nanorod arrays on sputtered aluminum-doped zinc oxide for photovoltaic applications[J]. Journal of Physical Chemistry, 2011, C115(9): 3539-3543. |
[26] |
TEKE A, OZGUR U, DOGAN X, et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO[J]. Physical Review, 2004, B70(19): 195207. |
[27] |
HU L N, WANG Y, JIANG Y J, et al. N-ion-implanted ZnO microtubes for highly-efficient UV detection[J]. Optical Materials, 2023, 138: 113683. |
[28] |
LOOK D C, REYNOLDS D C, LITTON C W, et al. Characterization of homoepitaxialp-type ZnO grown by molecular beam epitaxy[J]. Applied Physics Letters, 2002, 81(10): 1830-1832. |
[29] |
ODONNELL K P, CHEN X. Temperature-dependence of semiconductor band-gaps[J]. Applied Physics Letters, 1991, 58(25): 2924-2926. |
[30] |
SHIBATA H. Negative thermal quenching curves in photoluminescence of solids[J]. Japanese Journal of Applied Physics, 1998, 37(2): 550-553. |
[31] |
廖逸民, 闫胤洲, 王强, 等. ZnO微米晶的激光制备及发光性能研究[J]. 光谱学与光谱分析, 2022, 42(10): 3001-3005.LIAO Y M, YAN Y Zh, WANG Q, et al. Laser-induced growth device and optical properties of ZnO microcrystals[J]. Spectroscopy and Spectral Analysis, 2022, 42(10): 3001-3005(in Chinese). |
[32] |
VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1): 149-154. |
[33] |
HUANG Z H, YAN Y Zh, XING Ch, et al. Enhanced properties of hierarchically-nanostructured undoped acceptor-rich ZnO single-crystal microtube irradiated by UV laser[J]. Journal of Alloys and Compounds, 2019, 789: 841-851. |
[34] |
齐俊杰, 徐旻轩, 胡小峰, 等. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究[J]. 物理学报, 2015, 64(17): 172901.QI J J, XU M X, HU X F, et al. Frabrication and properties of self-powered ultraviolet detectors based on one-demensional ZnO nanomaterials[J]. Acta Physica Sinica, 2015, 64(17): 172901(in Chinese). |
[35] |
郭亮, 赵东旭, 张振中, 等. 退火处理对ZnO纳米线紫外探测器性能的改善[J]. 发光学报, 2011, 32(8): 844-847.GUO L, ZHAO D X, ZHANG Zh Zh, et al. Effects of annealing treatmenton on ZnO nonowires used for utraviotet detector[J]. Chinese Journal of Luminescence, 2011, 32(8): 844-847(in Chinese). |
[36] |
ZENG Y J, YE Z Z, LU Y F, et al. Investigation on ultraviolet photoconductivity in p-type ZnO thin films[J]. Chemical Physics Letters, 2007, 441(1/3): 115-118. |
[37] |
ZHENG Zh Y, LIU K W, CHEN X, et al. High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition[J]. Nanotechnology, 2021, 32(48): 475201. |
[38] |
LI G D, ZHANG H, MENG L X, et al. Adjustment of oxygen vacancy states in ZnO and its application in ppb-level NO2 gas sensor[J]. Science Bulletin, 2020, 65(19): 1650-1658. |