[1] ARULVEL S, RUFUSS D D W, JAIN A, et al. Laser processing techniques for surface property enhancement: Focus on material advancement[J]. Surfaces and Interfaces, 2023, 42(2): 103293.
[2] 柳文良. 铸钢表面Fe-Cr-C和Fe-Cr-Ni-C铸渗层形成机理研究[D]. 洛阳: 河南科技大学, 2020.LIU W L. Study on formation mechanism of Fe-Cr-C and Fe-Cr-Ni-C cast-infiltrated layers on cast steel surface[D]. Luoyang: Henan University of Science and Technology, 2020(in Chinese).
[3] 李嘉宁. 钛合金激光熔覆Ti-Al/陶瓷复合涂层组织结构与耐磨性的研究[D]. 青岛: 山东大学, 2012.LI J N. Investigation on microstructures and wear properties of Laser-cladded Ti-Al/ceramics composite coatings on titanium alloys[D]. Qingdao: Shandong University, 2012(in Chinese).
[4] 房刘杨. 高频微振辅助激光熔覆Co基自润滑复合涂层研究[D]. 上海: 上海工程技术大学, 2017.FANG L Y. Research on Co-based selflubricating composite coatings by high frequency light vibrating assisted laser cladding[D]. Shanghai: Shanghai University of Engineering Science, 2017(in Chinese).
[5] 李凯玥, 黄江, 师文庆, 等. WC对316L钢表面的铁基激光熔覆涂层的性能影响研究[J]. 应用激光, 2023, 43(6): 36- 41.LI K Y, HUANG J, SHI W Q, et al. Effect of WC on the properties of Ni-based laser cladding coating on 316L substrate[J]. Applied Laser, 2023, 43(6): 36- 41(in Chinese).
[6] FU Y L, GUO N, ZHOU C, et al. Investigation on In-situ laser cladding coating of the 304 stainless steel in water environment[J]. Journal of Materials Processing Technology, 2021, 289: 116949. doi: 10.1016/j.jmatprotec.2020.116949
[7] 刘政, 吴强, 林继兴, 等. 2205钢表面激光熔覆Ni基+WC合金涂层的研究[J]. 材料导报, 2016, 30(S2): 535-538.LIU Zh, WU Q, LIN J X, et al. Rsearch on laser surafce cladding of 2205 steel with Ni-based and WC powders[J]. Materials Reports, 2016, 30(S2): 535-538(in Chinese).
[8] CHEN Ch L, FENG A, WEI Y, et al. Effects of WC particles on microstructure and wear behavior of laser cladding Ni60 composite coatings[J]. Optics & Laser Technology, 2023, 163: 109425.
[9] 薛胜利, 李金华, 姚芳萍, 等. H13钢表面激光熔覆原位生成WC增强Ni60梯度涂层的组织及性能[J]. 稀有金属与硬质合金, 2022, 50(6): 41- 45.XUE Sh L, LI J H, YAO H P, et al. Microstructure and properties of in-situ generated WC-reinforced Ni60 gradient coating by laser cladding on H13 steel[J]. Rare Metals and Cemented Carbides, 2022, 50(6): 41- 45(in Chinese).
[10] 吴香林, 安芬菊, 李德荣, 等. 激光熔覆Ni60+WC粉末涂层的组织及性能研究[J]. 应用激光, 2023, 43(11): 1-8.WU X L, AN F J, LI D R, et al. Study on the tissue and properties of laser cusing Ni60+WC powder coating[J]. Applied Laser, 2023, 43(11): 1-8(in Chinese).
[11] 吴强. 基于蝶阀用2205双相不锈钢表面激光熔覆Ni/WC涂层性能的实验研究[D]. 赣州: 江西理工大学, 2017.WU Q. Experimental study on the performance of laser cladding Ni/WC coating on the surfaces of 2205 duplex stainless steel[D]. Ganzhou: Jiangxi University of Science and Technology, 2017(in Ch-inese).
[12] LU P, JIA L, ZHANG C, et al. Optimization on laser cladding parameters for preparing Ni60 coating along with its friction and wear properties[J]. Materials Today Communications, 2023, 37: 107162. doi: 10.1016/j.mtcomm.2023.107162
[13] 巩禄. 工艺参数对感应重熔及冷却处理Ni60涂层组织与性能的影响[D]. 兰州: 兰州理工大学, 2018.GONG L. Effect of processing parameters on microstructure and properties of Ni60 coating by Induction remelting and cooling[D]. Lanzhou: Lanzhou University of Technology, 2018(in Chinese).
[14] SHENG B Z, CHEN P J, YU X Y, et al. Effects of laser remelting on microstructural characteristics of Ni-WC composite coatings produced by laser hot wire cladding[J]. Journal of Alloys and Compounds, 2022, 908: 164612. doi: 10.1016/j.jallcom.2022.164612
[15] 吴萍, 姜恩永, 周昌炽, 等. 激光熔覆Ni/WC复合涂层的组织和性能[J]. 中国激光, 2003, 30(4): 357-360.WU P, JIANG E Y, ZHOU Ch Ch, et al. Microstructure and properties of Ni/WC composite coating prepared by laser cladding[J]. Chinese Journal of Lasers, 2003, 30(4): 357-360(in Ch-inese).
[16] 肖奇. 激光熔覆Cr-WC-Fe复合涂层工艺及抗磨蚀行为研究[D]. 乌鲁木齐: 新疆大学, 2022.XIAO Q. Research on process and anti-wear and corrosion behavior of laser cladded Cr-WC-Fe composite coatings[D]. Urumqi: Xinjiang University, 2022(in Chinese).
[17] QI X, LEI S W, XIN Y K, et al. Wear mechanisms and micro-eva-luation on WC particles investigation of WC-Fe composite coatings fabricated by laser cladding[J]. Surface and Coatings Technology, 2021, 420: 127341. doi: 10.1016/j.surfcoat.2021.127341
[18] PENG Y B, ZHANG W, LI T C, et al. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105044. doi: 10.1016/j.ijrmhm.2019.105044
[19] 黄凤晓, 江中浩, 刘喜明. 铁基合金+WC激光熔覆层的显微组织与性能[J]. 金属热处理, 2009, 34(1): 67-71.HUANG F X, JIANG Zh H, LIU X M. Microstructure and properties of Fe-base alloy +WC laser cladding layer[J]. Heat Treatment of Metals, 2009, 34(1): 67-71(in Chinese).
[20] 肖奇, 孙文磊, 刘金朵, 等. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.XIAO Q, SUN W L, LIU J D, et al. Surface corrosion behavior of Ni60A/WC laser coating[J]. Materials Reports, 2021, 35(8): 8146-8150(in Chinese).
[21] 王贵明. 等离子熔覆WC增强铁基涂层组织及性能研究[D]. 青岛: 山东科技大学, 2018.WANG G M. Praparation and properties analysis of the WC reinforced Fe-base coating prepared by plasma spray welding[D]. Qingdao: Shandong University of Science and Technology, 2018(in Ch-inese).
[22] 赵先锐, 左敦稳, 程虎, 等. 塑料模具钢表面激光熔覆WxC/Ni基合金涂层的组织及性能[J]. 材料热处理学报, 2013, 34(4): 177-181.ZHAO X R, ZUO D W, CHENG H, et al. Microstructure and pro-perties of laser clad Ni-based tungsten carbide alloy layer on a plastic mould steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(4): 177-181(in Chinese).
[23] 吴培桂. 钢表面激光多层熔覆技术的应用基础研究[D]. 上海: 上海工程技术大学, 2013.WU P G. Research on application foundation of multi-layer laser cladding on steels[D]. Shanghai: Shanghai University Of Engineering Science, 2013(in Chinese).
[24] YONG F X, DE J K. Effect of Ti2SnC mass fraction on microstructure and friction-wear performance of laser cladded Ni-WC coatings under WS2 lubrication condition[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2023, 237(11): 1628-1638.
[25] 王杉杉, 师文庆, 吴腾, 等. WC质量分数对激光熔覆Ni基涂层组织和性能的影响[J]. 激光技术, 2023, 47(4): 463- 468.WANG Sh Sh, SHI W Q, WU T, et al. Effect of WC mass fraction on microstructure and properties of laser cladding Ni-based coating[J]. Laser Technology, 2023, 47(4): 463- 468(in Chinese).
[26] 程虎, 方志刚, 赵先锐, 等. NAK80模具钢表面激光熔覆Ni基碳化钨合金涂层的组织和性能[J]. 表面技术, 2011, 40(1): 5-7.CHENG H, FANG Zh G, ZHAO X R, et al. Microstructure and properties of laser cladding Ni-based tungsten carbide alloy coating on NAK80 mold steel[J]. Surface Technology, 2011, 40(1): 5-7(in Chinese).
[27] YU K, ZHAO W, LI Z, et al. High-temperature oxidation behavior and corrosion resistance of in-situ TiC and Mo reinforced AlCoCrFeNi-based high entropy alloy coatings by laser cladding[J]. Ceramics International, 2023, 49(6): 10151-10164.
[28] HU Z, LI Y, LU B, et al. Effect of WC content on microstructure and properties of high-speed laser cladding Ni-based coating[J]. Optics & Laser Technology, 2022, 155: 108449.
[29] 文成, 田玉琬, 王贵, 等. 海工混凝土微孔隙环境中钢筋的腐蚀电化学行为[J]. 广东海洋大学学报, 2022, 42(2): 126-134.WEN Ch, TIAN Y W, WANG G, et al. Electrochemical behavior of steel corrosion in microporous environment of marine concrete[J]. Journal of Guangdong Ocean University, 2022, 42(2): 126-134(in Chinese).
[30] LUO F Y, YANG T Ch, ZHAO Y, et al. Effect of W content on microstructure and properties of laser cladding CoCrFeNi HEA coating[J]. Coatings, 2023, 13(8): 1301.
[31] LU J Z, HAN B, CUI C Y, et al. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers[J]. Optics & Laser Technology, 2017, 88: 250-262.
[32] YANG H, XU Z, PENG L, et al. High ductility and corrosion resistance chromium gradient stainless steel for fuel cell bipolar plates fabricated via laser powder bed fusion[J]. Journal of Materials Processing Technology, 2023, 317: 118002.
[33] LONG L, MENG Y, MIURA H, et al. The effect of surface enriched chromium and grain refinement by ball milling on corrosion resistance of 316L stainless steel[J]. Materials Research Bulletin, 2017, 91: 91-97.
[34] WANG Z Q, WANG X L, NAN Y R, et al. Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique[J]. Materials Characterization, 2018, 138: 67-77. s