[1] MARK C P, KAMATH S. Review of active space debris removal methods[J]. Space Policy, 2019, 47: 194-206. doi: 10.1016/j.spacepol.2018.12.005
[2] FANG Y W. Space-based pulse laser removal of near-earth small debris[J]. Optik, 2021, 226: 165898. doi: 10.1016/j.ijleo.2020.165898
[3] MERINO M, AHEDO E, BOMBARDELLI C, et al. Ion beam shepherd satellite for space debris removal[C]//Progress in Propulsion Physics. St Petersburg, Russian: EDP Sciences, 2013: 789-802.
[4] ZHAO X T, EMAMI M R, ZHANG Sh J. Image-based control for rendezvous and synchronization with a tumbling space debris[J]. Acta Astronautica, 2021, 179(2): 56-68.
[5] PHIPPS C R, ALBRECHT G, FRIEDMAN H, et al. Orion: Clearing near-earth space debris using a 20 kW, 530 nm, earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 1996, 14(1): 1-44. doi: 10.1017/S0263034600009733
[6] ESMILLER B, JACQΜELARD C, ECKEL H A, et al. Space debris removal by ground-based lasers: Main conclusions of the european project cleanspace[J]. Applied Optics, 2014, 53(31): I45-154. doi: 10.1364/AO.53.000I45
[7] SOΜLARD R, QΜINN M N, TAJIMA T, et al. Ican: A novel laser architecture for space debris removal[J]. Acta Astronautica, 2014, 105(1): 192-200. doi: 10.1016/j.actaastro.2014.09.004
[8] PATEL B G, BEHERA N, SINGH R K, et al. A 3-D magnetohydrodynamic simulation of the propagation of a plasma plume transverse to applied magnetic field[J]. Plasma Physics and Controlled Fusion, 2021, 63(11): 115020. doi: 10.1088/1361-6587/ac2617
[9] KAΜTZ E J, PHILLIPS M C, HARILAL S S. Unraveling spatio-temporal chemistry evolution in laser ablation plumes and its relation to initial plasma conditions[J]. Analytical Chemistry, 2020, 92(20): 13839-13846. doi: 10.1021/acs.analchem.0c02477
[10] 常浩, 金星, 叶继飞, 等. 激光功率密度对纳秒激光烧蚀冲量耦合影响的数值模拟[J]. 推进技术, 2013, 34(10): 1426-1431.CHANG H, JIN X, YE J F, et al. Numerical simulation of laser power density effect on nanosecond laser impulse coupling[J]. Propulsion Technology, 2013, 34(10): 1426-1431(in Chinese).
[11] 常浩, 金星, 叶继飞, 等. 真空环境下纳秒脉冲激光烧蚀典型材料的推进流场特性分析[J]. 推进技术, 2017, 38(6): 1427-1433.CHANG H, JIN X, YE J F, et al. Flow field characteristics of nanosecond pulsed laser ablation propulsion with typical materials under vacuum conditions[J]. Propulsion Technology, 2017, 38(6): 1427-1433(in Chinese).
[12] 叶继飞, 洪延姬. 激光微烧蚀固体靶材羽流流场演化特性[J]. 红外与激光工程, 2013, 42(s1): 47-51.YE J F, HONG Y J. Plume field evolvement characteristics of the laser micro ablation for solid target[J]. Infrared and Laser Engineering, 2013, 42(s1): 47-51(in Chinese).
[13] 沈双晏, 金星, 李倩. 空间碎片典型材料激光烧蚀反喷羽流实验研究[J]. 强激光与粒子束, 2015, 27(5): 051014.SHEN Sh Y, JIN X, LI Q. Laser ablation expansion plume performance experiments with typical material of orbital debris[J]. High Power Laser and Particle Beams, 2015, 27(5): 051014(in Chinese).
[14] 金龙. 激光冲量耦合作用检测及实验研究[D]. 新乡: 河南师范大学, 2013: 9-12.JIN L. Detection and experimental study of laser impulse coupling[D]. Xinxiang: Henan Normal University, 2013: 9-12(in Chinese).
[15] 常浩. 纳秒激光烧蚀冲量耦合特性及在空间碎片清除中的应用[D]. 北京: 装备学院, 2014: 49-51.CHANG H. Nanosecond laser ablation impulse coupling characteristics and its application in space debris removal[D]. Beijing: Equipment College, 2014: 49-51(in Chinese).
[16] 孙承纬. 激光辐照效应[M]. 北京: 国防工业出版社, 2002: 81-85.SUN Ch W. Laser irradiation effects[M]. Beijing: National Defense Industry Press, 2002: 81-85(in Chinese).
[17] GUSAROV A V, GNEDOVETS A G, SMUROV L. Gas dynamics of laser ablation: Influence of ambient atmosphere[J]. Journal of Applied Physics, 2000, 88(7): 4352-4364. doi: 10.1063/1.1286175
[18] SCHARRING S, WILKEN J, ECKEL H A. Laser-based removal of irregularly shaped space debris[J]. Optical Engineering, 2016, 56(1): 011007.
[19] 梁晓博. 天基脉冲激光辐照小尺寸空间碎片动力学行为研究[D]. 西安: 西安理工大学, 2021: 26-28.LIANG X B. Dynamic behaviors of small-sized space debris irradiated by space-based pulse laser[D]. Xi'an: Xi'an University of Technology, 2021: 26-28(in Chinese).
[20] 张潇允, 张巍, 夏盛强, 等. 高功率激光辐照CFRP的温度场和应力场的数值分析[J]. 激光技术, 2021, 45(5): 636-641.ZHANG X Y, ZHANG W, XIA Sh Q, et al. Study on numerical analysis of temperature field and stress field of carbon fiber reinforced polymers irradiated by high power laser[J]. Laser Technology, 2021, 45(5): 636-641(in Chinese).