[1] HUANG Y, ZHAO J Y, WANG J D, et al. A real-time polarization compensation system over optical fibers based on wavelength division multiplexing[J]. Acta Optica Sinica, 2020, 40(14): 1406003(in Chinese). doi: 10.3788/AOS202040.1406003
[2] MA J P, SHANG J H, SUN J T, et al. Laser ranging system based on high speed pulse modulation and echo sampling[J]. Chinese Journal of Lasers, 2019, 46(8): 0810004(in Chinese). doi: 10.3788/CJL201946.0810004
[3] LIU Y X, FAN Q, LI X Y, et al. Realization of silicon single photon detector with ultra-low dark counting rate[J]. Acta Optica Sinica, 2020, 40(10): 1004001(in Chinese). doi: 10.3788/AOS202040.1004001
[4] SHANGGUAN M J. Laser remote sensing with 1.5μm single photon detectors[D]. Hefei: University of Science and Technology of China, 2017: 16-23(in Chinese).
[5] LIU H X, ZHOU B, HE X, et al. Dual stochastic detection process for APD receiving laser in turbulent atmosphere[J]. Laser Technology, 2019, 43(4): 471-475(in Chinese).
[6] CHEN Ch. Study on the characteristics and application of the photomultiplier tubes[J]. Digital Communication World, 2018, 163(7): 144-145(in Chinese).
[7] LV D L, HE Y, YU J Y, et al. Research of error analysis and positioning accuracy of airborne dual-frequency LIDAR[J]. Laser & Opto-electronics Progress, 2018, 55(8): 082806(in Chinese).
[8] WANG X, PAN Zh H, LUO Sh, et al. Bathymetric technology and research status of airborne lidar[J]. Hydrographic Surveying and Charting, 2019, 39(5): 78-82(in Chinese).
[9] HU Sh J, HE Y, ZANG G H, et al. A new airborne laser bathymetry system and survey result[J]. Chinese Journal of Lasers, 2006, 33(9): 1163-1167(in Chinese).
[10] PETTIFER R E W. Signal induced noise in lidar experiments[J]. Journal of Atmospheric & Terrestrial Physics, 1975, 37(4): 669-673.
[11] ZHANG Y P, FAN Y I, WEI K, et al. Analysis of relative error in detection caused by signal-induced noise in Na lidar system[J]. Science China(Earth Sciences Edition), 2018, 61(1): 109-118.
[12] CAMPBELL L. Afterpulse measurement and correction[J]. Review of Scientific Instruments, 1992, 63(12): 5794-5798. doi: 10.1063/1.1143365
[13] WILLIAMSON C K, de YOUNG R J. Method for the reduction of signal-induced noise in photomultiplier tubes[J]. Applied Optics, 2000, 39(12): 1973-1979. doi: 10.1364/AO.39.001973
[14] LI Q H, CHEN L Y, CHEN F, et al. Airborne blue-green laser ocean sounding[J]. Acta Photonica Sinica, 1996, 25(11): 1008-1015(in Chinese).
[15] DAI Y J. Laser radar technique[M]. Beijing: Publishing House of Electronic Industry, 2010: 173(in Chinese).
[16] WANG L. Characteristic analysis of signal-induced noise of photomultiplier[D]. Beijing: University of Chinese Academy of Science, 2019: 13-14(in Chinese).
[17] LIN J Ch, MIAO Y, YAN H, et al. Research on a new type of linear piecewise interpolation[J]. Journal of Hefei Institute of Education, 1999, 16(4): 3-5(in Chinese).
[18] WALKER R E, McLEAN J W. Lidar equations for turbid media with pulse stretching[J]. Applied Optics, 1999, 38(12): 2384-2397. doi: 10.1364/AO.38.002384
[19] HU S Q. Study of high speed and high-sensitivity blue-green laser communication technology[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2018: 15-40(in Chinese).
[20] LIU M G. Research on airborne dual-frequency lidar waveform depth extract technology[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2018: 24-49(in Chinese).
[21] WANG A L. Statistics[M]. Xi'an: Xi'an Jiaotong University Press, 2010: 213-218(in Chinese).