[1] BARBARESCO F, MUTUEL L. Wake vortex detection, prediction and decision support tools in sesar program[EB/OL]. (2012-05-22)[2021-07-27]. https://www.scipedia.com/public/Lavergne_et_al_2014a.
[2] DANILLE V J, DJAFRI K, FRÉDÉRIC B. Model for the calculation of the radar cross section of wake vortices of take-off and landing airplanes[EB/OL]. (2012-03-02)[2021-07-27]. http://www.wakenet3-europe.eu/fileadmin/user_upload/News%26Publications/Barbaresco_EuRAD_final.pdf.
[3] ROBINS R E, DELISI D P. NWRA AVOSS wake vortex prediction algorithm version 3.1.1[EB/OL]. (2002-06-01)[2021-07-27]. https://ntrs.nasa.gov/citations/20020060722.
[4] FISCHENBERG D. A method to validate wake vortex encounter mo-dels from flight test data[EB/OL]. (2012-05-22)[2021-07-27]. https://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/041.PDF.
[5] LUCKNER R, HÖHNE G, FUHRMANN M. Hazard criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687. doi: 10.1016/j.ast.2004.06.008
[6] SARPKAYA T. New model for vortex decay in the atmosphere[EB/OL]. (2012-5-22)[2021-7-27]. https://doi.org/10.2514/2.2561.
[7] PAN W J, ZUO J J, LIANG Y A, et al. Dynamic response model and safety analysis of aircraft encountering wake[J]. Journal of Ordnance Equipment Engineering, 2019, 40 (6): 211-214(in Chin-ese).
[8] HU H. Research on aircraft wake encounter response and risk assessment method[D]. Tianjin: Civil Aviation University of China, 2019: 1-65(in Chinese).
[9] ZHAO N N, CHEN Y, LI X Ch, et al. Safety assessment method of aircraft wake reclassification standard[J]. Journal of Safety and Environment, 2020, 20(4): 1277-1283(in Chinese).
[10] FRÉDÉRIC B, PHILIPPE J, MATHIEU K, et al. Optimising runway throughput through wake vortex detection, prediction and decision support tools[C]//2011 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles. New York, USA: IEEE, 2011: 27-32.
[11] SARPKAYA T. Decay of wake vortices of large a ircraft[J]. AIAA Journal, 1998, 36(9): 1671-1679. doi: 10.2514/2.570
[12] GERZ T, HOLZÄPFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208. doi: 10.1016/S0376-0421(02)00004-0
[13] HOLZAPFEL F. Probabilistic two-phase wake vortex decay and trans-port model[J]. Journal of Aircraft, 2003, 40(2): 323-331. doi: 10.2514/2.3096
[14] PAN W J, WU Zh Y, ZHANG X L. Lidar wake vortex recognition based on k-nearest neighbor[J]. Laser Technology, 2020, 44(4): 471-477(in Chinese).
[15] ZUO J J. Research on aircraft wake encounter risks during approach phase[D]. Guanghan: Civil Aviation Flight University of China, 2019: 1-63(in Chinese).
[16] LIU P Q. Aerodynamics[M]. Beijing: Science Press, 2021: 1-608(in Chinese).
[17] ANDERSON J D, YANG Y, SONG W P. Fundamentals of aerodynamics (Bilingual Teaching Version)[M]. 5th ed. Beijing: Aviation Industry Press, 2014: 26-34.
[18] LANG S, TITTSWORTH J, BRYANT W H, et al. Progress on an ICAO wake turbulence re-categorization effort[EB/OL]. (2012-06-14)[2021-07-27]. https://doi.org/10.2514/6.2010-7682.
[19] CONDIT P M, TRACY P W. Results of the boeing company wake turbulence test program[M]. New York, USA: Plenum Press, 1971: 473-508.