[1] 黄玉萍, 刘英, 杨雨图, 等. 空间分辨光谱和可见/近红外光谱的番茄颜色等级判别[J]. 光谱学与光谱分析, 2019, 39(11): 3585-3591.HUANG Y P, LIU Y, YANG Y T, et al. Discrimination of tomato color grade by spatial resolution spectroscopy and visible/near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3585-3591(in Chinese).
[2] SUN X, SUBEDI P, WALSH K B. Achieving robustness to temperature change of a NIRS-PLSR model for intact mango fruit dry matter content[J]. Postharvest Biology and Technology, 2020, 162: 111117. doi: 10.1016/j.postharvbio.2019.111117
[3] XIA Y, HUANG W, FAN S, et al. Effect of spectral measurement orientation on online prediction of soluble solids content of apple using Vis/NIR diffuse reflectance[J]. Infrared Physics & Technology, 2019, 97: 467-477.
[4] GUO Z, HUANG W, PENG Y, et al. Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of 'Fuji'apple[J]. Postharvest Biology and Technology, 2016, 115: 81-90. doi: 10.1016/j.postharvbio.2015.12.027
[5] YAO Y, CHEN H, XIE L, et al. Assessing the temperature influence on the soluble solids content of watermelon juice as measured by visible and near-infrared spectroscopy andchemometrics[J]. Journal of Food Engineering, 2013, 119(1): 22-27. doi: 10.1016/j.jfoodeng.2013.04.033
[6] XIA Y, FAN S, LI J, et al. Optimization and comparison of models for prediction of soluble solids content in apple by online Vis/NIR transmission coupled with diameter correction method[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 201: 104017. doi: 10.1016/j.chemolab.2020.104017
[7] CEN H, LU R, MENDOZA F, et al. Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue[J]. Postharvest Biology and Technology, 2013, 85: 30-38. doi: 10.1016/j.postharvbio.2013.04.014
[8] van BEERS R, AERNOUTS B, WATTÉ R, et al. Effect of maturation on the bulk optical properties of apple skin and cortex in the 500-1850 nm wavelength range[J]. Journal of Food Engineering, 2017, 214: 79-89. doi: 10.1016/j.jfoodeng.2017.06.013
[9] 张欣欣, 李尚科, 李跑, 等. 近红外漫反射光对水果的穿透能力研究[J]. 中国食品学报, 2022, 22(1): 298-305.ZHANG X X, LI Sh K, LI P, et al. Effects of near-infrared diffuse light on fruit penetration[J]. Chinese Journal of Food Science, 2022, 22(1): 298-305(in Chinese).
[10] 黄建军, 李雪梅, 滕宏泉. 基于偏最小二乘法的黄土湿陷性评价模型[J]. 灾害学, 2021, 36(2): 60-64.HUANG J J, LI X M, TENG H Q. Evaluation model of loess collapsibility based on partial least square method[J]. Journal of Disaster Science, 2021, 36(2): 60-64(in Chinese).
[11] 刘燕德, 王军政, 姜小刚, 等. 多模式可调节光学机构的苹果可溶性固形物近红外光谱检测[J]. 光谱学与光谱分析, 2021, 41(7): 2064-2070.LIU Y D, WANG J Zh, JIANG X G, et al. Detection of soluble solids in apple by near infrared spectroscopy with multi-mode adjustable optical mechanism[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2064-2070(in Chinese).
[12] MCDEVITT R M, GAVIN A J, ANDRÉS S, et al. The ability of visible and near infrared reflectance spectroscopy to predict the chemical composition of ground chicken carcasses and to discriminate between carcasses from different genotypes[J]. Hispania, 2005, 13(3): 109-117.
[13] ZHOU L J, WU H, LI J T, et al. Determination of fatty acids in broiler breast meat by near-infrared reflectance spectroscopy[J]. Meat Science, 2012, 90(3): 658-664. doi: 10.1016/j.meatsci.2011.10.010
[14] 刘燕德, 朱丹宁, 吴明明, 等. 玉露香梨可溶性固形物近红外漫透射光谱在线检测[J]. 食品与机械, 2016, 32(10): 115-119.LIU Y D, ZHU D N, WU M M, et al. Online detection of soluble solids in yulu pear by near-infrared diffuse transmission spectroscopy[J]. Food and Machinery, 2016, 32(10): 115-119(in Chinese).
[15] 黎丽莎, 刘燕德, 胡军, 等. 近红外无损检测技术在水果成熟度判别中的应用研究[J]. 华东交通大学学报, 2021, 38(6): 95-105.LI L Sh, LIU Y D, HU J, et al. Application of near infrared nondestructive testing technology in fruit maturity discrimination[J]. Journal of East China Jiaotong University, 2021, 38(6): 95-105(in Chinese).
[16] 肖仕杰, 王巧华, 李春芳, 等. 傅里叶变换中红外光谱的牛奶品质无损检测分级[J]. 光谱学与光谱分析, 2022, 42(4): 1243-1249.XIAO Sh J, WANG Q H, LI Ch F, et al. Nondestructive testing classification of milk quality by Fourier transform infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1243-1249(in Chinese).
[17] 曹鹏涛, 张敏, 李振春. 基于广义S变换及高斯平滑的自适应滤波去噪方法[J]. 石油地球物理勘探, 2018, 53(6): 1128-1136.CAO P T, ZHANG M, LI Zh Ch. Adaptive filtering denoising method based on generalized S-transform and Gaussian smoothing[J]. Oil Geophysical Prospecting, 2018, 53(6): 1128-1136(in Chinese).
[18] 张锦龙, 辛明, 樊琳琳, 等. 基于近红外光谱在皮瓣移植术后的监测系统[J]. 激光技术, 2020, 44(1): 91-95.ZHANG J L, XIN M, FAN L L, et al. Monitoring system based on near infrared spectroscopy after skin flap transplantation[J]. Laser Technology, 2020, 44(1): 91-95(in Chinese).