[1] XU J S, ZHANG X C, XUAN F Z, et al. Rolling contact fatigue behavior of laser cladded WC/Ni composite coating[J]. Surface & Coatings Technology, 2014, 239: 7-15.
[2] 李福泉, 冯鑫友, 陈彦宾. WC含量对WC/Ni60A激光熔覆层微观组织的影响[J]. 中国激光, 2016, 43(4): 0403009.LI F Q, FENG X Y, CHEN Y B. Influence of WC content on microstructure of WC/Ni60A laser cladding layer[J]. Chinese Journal of Lasers, 2016, 43(4): 0403009(in Chinese).
[3] 李嘉宁, 刘科高, 张元彬, 等. 激光熔覆技术及应用[M]. 北京: 北京工业出版社, 2015: 109-110.LI J N, LIU K G, ZHANG Y B, et al. Laser cladding technology and application[M]. Beijing: Beijing Industry Press, 2015: 109-110(in Chinese).
[4] SHU D, LI Z G, ZHANG K, et al. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding[J]. Materials Letters, 2017, 195: 178-181. doi: 10.1016/j.matlet.2017.02.076
[5] ZHIKUN W, AIHUA W, XUHAO W, et al. Wear resistance of diode laser-clad Ni/WC composite coatings at different temperatures[J]. Surface & Coatings Technology, 2016, 304: 283-292.
[6] LEE C, PRAK H, YOO J, et al. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr[J]. Applied Surface Science, 2015, 345: 286-294. doi: 10.1016/j.apsusc.2015.03.168
[7] SHI Y, LI Y, LIU J, et al. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel[J]. Optics & Laser Technology, 2018, 99: 256-270.
[8] MA Q Sh, LI Y J, WANG J, et al. Microstructure evolution and growth control of ceramic particles in wide-band laser clad Ni60/WC composite coatings[J]. Materials & Design, 2016, 92: 897-905. doi: 10.11901/1005.3093.2016.252
[9] 吴鹏飞. 激光熔覆修复垃圾粉碎机刀盘工艺研究[D]. 广州: 广东工业大学, 2019: 46-48.WU P F. Research on laser cladding repairing cutter pulverizer[D]. Guangzhou: Guangdong University of Technology, 2019: 46-48(in Chinese).
[10] SONG L J, ZENG G Ch, XIAO H, et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders[J]. Journal of Manufacturing Processes, 2016, 24: 116-124. doi: 10.1016/j.jmapro.2016.08.004
[11] ZHOU Sh F, LEI J B, DAI X Q, et al. A comparative study of the structure and wear resistance of NiCrBSi/50 wt% WC composite coatings by laser cladding and laser induction hybrid cladding[J]. Journal of Refractory Metals and Hard Materials, 2016, 60: 17-27. doi: 10.1016/j.ijrmhm.2016.06.019
[12] LV Y H, LI J, TAOY F, et al. High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding[J]. Applied Surface Science, 2017, 402: 478-494. doi: 10.1016/j.apsusc.2017.01.118
[13] 游川川, 肖华强, 任丽蓉, 等. TC4表面激光熔覆Ti-Al-N复合涂层的组织与性能[J]. 激光技术, 2021, 45(5): 585-589.YOU Ch Ch, XIAO H Q, REN L R, et al. Microstructure and properties of laser cladding Ti-Al-N composite coating on TC4 surface[J]. Laser Technology, 2021, 45(5): 585-589(in Chinese).
[14] 吴祖鹏. Ni60A合金激光熔覆裂纹气孔控制方法研究[D]. 大连: 大连理工大学, 2019: 41-43.WU Z P. Study on crack and porosity control methods of laser cladding Ni60A alloy coating[D]. Daliang: Dalian University of Technology, 2019: 41-43(in Chinese).
[15] 陈子豪, 孙文磊, 黄勇, 等. 镍基高温合金激光熔覆涂层组织及性能研究[J]. 激光技术, 2021, 45(4): 441-447.CHEN Z H, SUN W L, HUANG Y, et al. Study on microstructure and properties of laser cladding coating for base superalloy[J]. Laser Technology, 2021, 45(4): 441-447(in Chinese).
[16] JO T S, LIM J H, KIM Y D. Dissociation of Cr-rich M23C6 carbide in alloy 617 by severe plastic deformation[J]. Journal of Nuclear Materials, 2010, 406(3): 360-364.
[17] IMURAI S, THANACHAYANONTT C, PEARCE J, et al. Effects of W on microstructure of as-cast 28wt%Cr-2.6wt%C-(0-10)wt%W irons[J]. Materials Characterization, 2015, 99: 52-60.
[18] HIROTA K, MITANI M K, YAMAGUCHI O. Simultaneous synthesis and consolidation of chromium carbides (Cr3C2, Cr7C3 and Cr23C6) by pulsed electric-current pressure sintering[J]. Materials Science and Engineering, 2005, A399(1/2): 154-160.
[19] WANG D, ZHANG J, LOU L H. Formation and stability of nano-scaled M23C6 carbide in a directionally solidified Ni-base superalloy[J]. Materials Characterization, 2009, 60 (12): 1517-1521.