[1] ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity a-pproach[J]. Optics Express, 2013, 21(7): 9144-9155. doi: 10.1364/OE.21.009144
[2] GUO C C, ZHU Z H, YUAN X D, et al. Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures[J]. Advanced Optical Materials, 2016, 4: 1955-1960. doi: 10.1002/adom.201600481
[3] WU J J, GAO J X. Absorption characteristics of metal-graphene photonic crystal-metal structures[J]. Laser Technology, 2019, 43(5): 614-618(in Chinese).
[4] TORABI E S, FALLAHI A, YAHAGHI A. Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption[J]. IEEE Transactions on Antennas & Propagation, 2017, 65(3): 1464-1467.
[5] KUSIAKU K, DAIF O E, LECLEREQ J L, et al. Dual-wavelength micro-resonator combing photonic crystal membrane and Fabry-Pérot cavity[J]. Optics Express, 2011, 19(16): 15255-15264. doi: 10.1364/OE.19.015255
[6] VINCENTI M A, CEGLIA D D, GRANDE M, et al. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect[J]. Optics Letters, 2013, 38(18): 3550-3553. doi: 10.1364/OL.38.003550
[7] KONG X K, SHI X Z, MO J J, et al. Tunable multichannel absorber composed of graphene and doped periodic structures[J]. Optics Communications, 2017, 383: 391-396. doi: 10.1016/j.optcom.2016.09.038
[8] ZHAO B, ZHANG Z M. Strong plasmonic coupling between graphene ribbon array and metal gratings[J]. ACS Photonics, 2015, 2(11): 1611-1618. doi: 10.1021/acsphotonics.5b00410
[9] QI L M, LIU C, SHAH S M A. A broad dual-band switchable graphene-based terahertz metamaterial absorber[J]. Carbon, 2019, 153: 179-188. doi: 10.1016/j.carbon.2019.07.011
[10] BIAN L A, YANG L, LIU P G, et al. Controllable perfect absorption in a double-cavity photonic crystal with one graphene monolayer[J]. Journal of Physics, 2018, D51(2): 025106.
[11] FARHAT M, ROCKSTUHL C, BAGCI H. A 3-D tunable and multi-frequency grapheme plasmonic cloak[J]. Optics Express, 2013, 21(10): 12592-12603. doi: 10.1364/OE.21.012592
[12] MOHARAM M G, GRANN E B, POMMET D A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of Ame-rica, 1995, A12(5): 1068-1076.
[13] BIAN L A, LIU P G, HAN Z Z, et al. Near-unity absorption in a graphene-embedded defective photonic crystals array[J]. Superla-ttices and Microstructures, 2017, 104: 461-469. doi: 10.1016/j.spmi.2017.03.008
[14] QING Y M, MA H F, REN Y Z, et al. Near-infrared absorption-induced switching efect via guided mode resonances in a graphene-based metamaterial[J]. Optics Express, 2019, 27(4): 5253-5263. doi: 10.1364/OE.27.005253
[15] VASIC B, GAJIC R. Tunable Fabry-Perot resonators with embedded graphene from terahertz to near-infrared frequencies[J]. Optics Le-tters, 2014, 39(21): 6253-6256. doi: 10.1364/OL.39.006253
[16] GAO J, SANG T, LI J J, et al. Double-channel absorption enhancement of graphene using narrow groove metal grating[J]. Acta Physica Sinica, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848