[1] ZORKIN V S, CHULYAEVA E G, GOMOZKOVA E Y. Effect of magnetic fields on the dual-frequency active element of a He-Ne laser[J]. Journal of Optical Technology, 2020, 87(6): 338-341. doi: 10.1364/JOT.87.000338
[2] KOK Y, IRELAND M J, ROBERTSON J G, et al. Low-cost scheme for high-precision dual-wavelength laser metrology[J]. Applied Optics, 2013, 52(12): 2808-2814. doi: 10.1364/AO.52.002808
[3] WANG X B, SONG L K, ZHU H F. Measurement of wide-band phase retardation variation of wave-plates by means of continuous polarization interference method[J]. Laser Technology, 2012, 36(2): 258-261(in Chinese). doi: 10.3969/j.issn.1001-3806.2012.02.029
[4] ZHONG L, HUANG W. Review of frequency stabilization of laser[J]. Machine Design & Research, 2006, 33(9): 25-27(in Chinese).
[5] LI L D. Research on the system of Zeeman stabilized He-Ne laser made of zerdour[D]. Changsha: Graduate School of National University of Defense Technology, 2010: 8-9(in Chinese).
[6] QIAN J, LIU Zh Y, SHI Ch Y, et al. Frequency stabilization of internal-mirror He-Ne lasers by air cooling[J]. Applied Optics, 2012, 51(25): 6084-6088. doi: 10.1364/AO.51.006084
[7] FENG J. Research on water-cooling technology for frequency offset locking frequency stabilized laser[D]. Harbin: Harbin Institute of Technology, 2015: 6-7(in Chinese).
[8] YAN M, GAO Zh Sh. The simple method research for measuring the phase retardation of wave-plates [J]. Laser Technology, 2005, 29(3): 233-236(in Chinese). doi: 10.3969/j.issn.1001-3806.2005.03.022
[9] LIANG J, LONG X W. Stability analysis of beat frequency in double-longitudinal-mode He-Ne laser[J]. Acta Optica Sinica, 2009, 29(5): 1301-1304 (in Chinese). doi: 10.3788/AOS20092905.1301
[10] REN L B, DING Y Ch, ZHOU L F, et al. Mid-frequency difference He-Ne ZB laser with elastic force-exerting and its frequency stabilization[J]. Infrared and Laser Engineering, 2008, 37(5): 814-817(in Chinese). doi: 10.3969/j.issn.1007-2276.2008.05.015
[11] ZONG X B, ZHU J, LI Y, et al. Phase retardation measurement of wave-plate based on laser frequency splitting technology[J]. Laser Technology, 2003, 27(4): 293-306(in Chinese).
[12] ZHANG Sh L. Principle of orthogonal polarization[M]. Beijing: Tsinghua University Press, 2005: 166-167(in Chinese).
[13] EL-DIASTY F, SOBEE M A, HUSSIEN H, et al. A heterodyne laser system to study frequency stabilized Zeeman 633nm He-Ne lasers deficient in temperature steadiness[J]. MAPAN, 2011, 26(4): 295-302. doi: 10.1007/s12647-011-0027-0
[14] TOSHIHIKO Y. Frequency stabilization of internal-mirror He-Ne(λ=633nm)lasers using the polarization properties[J]. Japanese Journal of Applied Physics, 2014, 19(11): 2181-2185.
[15] XU L, ZHANG Sh L, TAN Y D, et al. Simultaneous measurement of refractive-index and thickness for optical materials by laser feed-back interferometry[J]. Review of Scientific Instruments, 2014, 85(8): 1693-1697.
[16] CHEN X J, TANG X H, PENG H. Research of power stability for 3kW RF slab CO2 laser[J]. Laser Technology, 2017, 41(1): 91-93(in Chinese).
[17] WANG Q, QIAN Y M, ZHANG Sh L. Thermal drift of frequency difference of frequency splitting laser with force-exerting[J]. Infrared and Laser Engineering, 2021, 50(2): 20200392 (in Chinese).
[18] ZHOU H Q, XIA G Q, DENG T, et al. Influence of external cavity length variation on the lasing wavelength of the fiber grating external cavity semiconductor laser[J]. Laser Technology, 2005, 29(5): 476-490(in Chinese).
[19] DIAO X F, TAN J B, HU P P, et al. Frequency stabilization of an internal mirror He-Ne laser with a high frequency reproducibility[J]. Journal of Applied Optics, 2013, 52(3): 456-460.
[20] YANG J H. Research on frequency stabilized technology of He-Ne laser with thermoelectric cooler[D]. Harbin: Harbin Institute of Technology, 2007: Ⅰ(in Chinese).