[1] TONG L, GATTASS R R, ASHCOM J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816-819. doi: 10.1038/nature02193
[2] ZHENG Z W, REN W H, ZHAO C J, et al. Guiding and far-field radiation characteristics of micro/nano optical fiber[J]. Laser Technology, 2009, 33(5): 497-499(in Chinese).
[3] KORPOSH S, JAMES S W, LEE S W, et al. Tapered optical fibre sensors: Current trends and future perspectives[J]. Sensors, 2019, 19(10): 2294. doi: 10.3390/s19102294
[4] CAI W D. Propagation characteristics of silicon-based micro-nano optical fiber[D]. Changsha: Hunan University, 2019: 20-32(in Chinese).
[5] JIANG X Y, XIAO Y Y. Temperature characteristics of birefringence of polarization-maintaining micro/nanofiber[J]. Chinese Journal of Lasers, 2019, 46(8): 0806001(in Chinese). doi: 10.3788/CJL201946.0806001
[6] LIU Y G, ZHANG W. Temperature characteristics of micro-nanofiber bragg grating surrounded with liquids[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040605(in Chinese).
[7] ZHANG L, ZENG Y, CHEN G Q, et al. Energy distribution of wedge-shaped micro/nano fiber[J]. Laser Technology, 2015, 39(5): 689-693(in Chinese).
[8] DING R, ZHU Y Q, YAO X T. Simulation of micronano fiber couplers based on fused drawing[J]. Laser Technology, 2018, 42(4): 462-465(in Chinese).
[9] ZHANG X Y, QIAN Y H, ZHANG Z X. Refractive index sensing based on micro-nano fiber resonant ring[J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 631-635(in Chinese).
[10] LI J J, LIU Y, QU S L. Research progress of femtosecond laser micro-nano processing optical fiber functional devices[J/OL]. (2020-01-27)[2020-08-27]. http://kns.cnki.net/kcms/detail/31.1690.TN.20200512.1512.002.html(in Chinese).
[11] LUO Y, MA J, ZHONG Y Ch. Fabrication of photonic crystal micro-fiber and its characteristics[J]. Laser Technology, 2015, 39(3): 312-315(in Chinese).
[12] LIU Z L. Study on theoretical modeling and applications of hybrid microfiber devices[D]. Lanzhou: Lanzhou University, 2019: 58-127(in Chinese).
[13] YU Y, ZHANG X L, SONG Zh Q, et al. Precise control of the optical microfiber tapering process based on monitoring of intermodal interference[J]. Applied Optics, 2014, 53(35): 8222-8228. doi: 10.1364/AO.53.008222
[14] KELOTH J, SADGROVE M, YALLA R, et al. Diameter measurement of optical nanofibers using a composite photonic crystal cavity[J]. Optics Letters, 2015, 40(17): 4122-4125. doi: 10.1364/OL.40.004122
[15] KANG Y, GONG J, XU Y X, et al. Ultrahigh-precision diameter control of nanofiber using direct mode cutoff feedback[J]. IEEE Photonics Technology Letters, 2020, 32(5): 219-222. doi: 10.1109/LPT.2020.2966804
[16] WEI Zh T, HOU D T, MIAO J S, et al. Precise control of optical microfiber diameter[J]. High Power Laser and Particle Beams, 2018, 30(7): 137-141(in Chinese).
[17] MA Ch J, XU W F, LI J M, et al. Research progress of gas sensor based on microfiber evanescent field effects[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100003(in Chinese).
[18] ZHANG E J, SACHER W D, POON J K S. Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers[J]. Optics Express, 2010, 18(21): 22593-22598. doi: 10.1364/OE.18.022593
[19] MERKULOV I A, MELESHKO A V, WELLS J C, et al. Two growth modes of graphitic carbon nanofibers with herring-bone structure[J]. Physical Review, 2005, B72(4): 045409.
[20] BIRKS T A, LI Y W. The shape of fiber tapers[J]. Journal of Lightwave Technology, 2002, 10(4): 432-438.
[21] XU F. Optical fibre nanowire devices[D]. Southampton, UK: University of Southampton, 2008: 1-159.
[22] LOVE J D, HENRY W M, STEWART W J, et al. Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria[J]. IEE Proceedings, 1991, J138(5): 343-354.