[1] 刘荣战, 薄报学, 么娜, 等. 体布拉格光栅外腔红光半导体激光器实验研究[J]. 发光学报, 2019, 40(11): 1401-1408.LIU R Zh, BO B X, YAO N, et al. Experimental research on vo-lume-Bragg-grating external cavity red-light semiconductor lasers[J]. Chinese Journal of Luminescence, 2019, 40(11): 1401-1408(in Chinese).
[2] 孟雪, 宁永强, 张建伟, 等. 面向激光显示的红光半导体激光器的研究进展[J]. 激光与光电子学进展, 2019, 56(18): 180001.MENG X, NING Y Q, ZHANG J W, et al. Research progress of red semiconductor laser diodes for laser display[J]. Laser & Optoelectro-nics Progress, 2019, 56(18): 180001(in Chinese).
[3] 王玉, 张玲, 杨盈莹, 等. 高功率蓝紫光半导体激光器及其光场匀化研究[J]. 半导体光电, 2019, 40(1): 38-47.WANG Y, ZHANG L, YANG Y Y, et al. High-power blue-violet laser diode and its optical field homogenization[J]. Semiconductor Optoelectronics, 2019, 40(1): 38-47(in Chinese).
[4] LIU Y, LIU Y, LI L H, et al. Wavelength stabilization and spectra narrowing of a 405 nm external-cavity semiconductor laser based on a volume Bragg grating[J]. Applied Optics, 2022, 61(14): 4132-4139. doi: 10.1364/AO.456078
[5] NYAUPANE P R, LIKAM P L, BRAIMAN Y, et al. Spectral linewidth narrowing of two broad area blue laser diodes (445 nm) with a common external cavity[J]. Optics Letters, 2021, 46(11): 2718-2721. doi: 10.1364/OL.425409
[6] LI B, GAO J, YU A, et al. 500 mW tunable external cavity diode laser with narrow line-width emission in blue-violet region[J]. Optics & Laser Technology, 2017, 96(1): 176-179.
[7] RUHNKE N, MVLLER A, EPPICH B, et al. Micro-integrated external cavity diode laser with 1.4 W narrowband emission at 445 nm[J]. IEEE Photonics Technology Letters, 2016, 28(24): 2791-2794. doi: 10.1109/LPT.2016.2623362
[8] MOSER C, HO L, HAVERMEYER F. A novel tunable diode laser using volume holographic gratings[J]. Proceedings of the SPIE, 2009, 7193: 71930V. doi: 10.1117/12.816045
[9] DING D, LV X, CHEN X, et al. Tunable high-power blue external cavity semiconductor laser[J]. Optics & Laser Technology, 2017, 94(1): 1-5.
[10] MUKHTRA S, SHEN C, ASHRY I, et al. Blue laser diode system with an enhanced wavelength tuning range[J]. IEEE Photonics Journal, 2020, 12(2): 1502110-1502114.
[11] 顾波. 高功率蓝光半导体激光器为金属加工打开了新的大门[J]. 金属加工(热加工), 2021, 12(3): 1-6.GU B. High power blue semiconductor laser opens a new door for metal processing[J]. Metalworking (Hot Working), 2021, 12(3): 1-6(in Chinese).
[12] 段程芮, 赵鹏飞, 王旭葆, 等. 高亮度蓝光半导体激光器光纤耦合技术[J]. 光电工程, 2021, 48(5): 200372.DUAN Ch R, ZHAO P F, WANG X B, et al. Fiber coupling techno-logy of high brightness blue laser diode[J]. Opto-Electronic Engineering, 2021, 48(5): 200372(in Chinese).
[13] 张世鑫, 赵爽, 王一璋, 等. 自由曲面透镜白光LED光束整形技术[J]. 激光技术, 2021, 45(3): 357-361. doi: 10.7510/jgjs.issn.1001-3806.2021.03.016ZHANG Sh X, ZHAO Sh, WANG Y Zh, et al. White LED beam shaping technology based on free-form surface lens[J]. Laser Technology, 2021, 45(3): 357-361(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2021.03.016
[14] 袁浩. 复杂场高斯光束匀化技术研究[D]. 长春: 吉林大学, 2020: 21-24.YUAN H. Study on Gaussian beam homogenization in cmples field master dissertation[D]. Changchun: Jilin University, 2020: 21-24(in Chinese).
[15] 李殿军, 梁思远, 曹建健. 非球面伽利略扩束系统实现激光束空间整形[J]. 激光技术, 2008, 32(4): 427-429.LI D J, LIANG S Y, CAO J J. Spatial laser beam shaping using aspheric Galilean beam expansion system[J]. Laser Technology, 2008, 32(4): 427-429(in Chinese).
[16] 刘荣战. 高亮度体光栅外腔红光半导体激光器的研究[D]. 长春: 长春理工大学, 2020: 21-44.LIU R Zh. Research on high brightness volume Bragg grating external cavity red light semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2020: 21-44(in Chinese).
[17] 王玉, 张玲, 杨盈莹, 等. 高功率蓝紫光半导体激光器及其光场匀化研究[J]. 半导体光电, 2019, 40(1): 38-41.WANG Y, ZHANG L, YANG Y Y, et al. High-power blue-violet laser diode and its optical field homogenization[J]. Semiconductor Optoelectronics, 2019, 40(1): 38-41 (in Chinese).
[18] 帅词凤. 自适应激光前照灯光学系统设计[D]. 重庆: 重庆大学, 2016: 71-73.SHUAI C F. Lighting design of adaptive front-lighting system based on laser source[D]. Chongqing: Chongqing University, 2016: 71-73(in Chinese).
[19] 殷智勇, 汪岳峰, 贾文武, 等. 基于微透镜阵列光束均匀化的傅里叶分析[J]. 激光与红外, 2012, 42(2): 119-123.YIN Zh Y, WANG Y F, JIA W W, et al. Fourier analysis of light beam uniformity based on the microlens array[J]. Laser & Infrared, 2012, 42(2): 119-123(in Chinese).
[20] 姜安琪. 基于微透镜阵列和随机场景的光匀化系统研究[D]. 杭州: 浙江大学, 2020: 17-47.JIANG A Q. Research on the beam homogenization system based on the microlens arrays and random scenes[D]. Hangzhou: Zhejiang University, 2020: 17-47(in Chinese).
[21] 吕乃光. 傅里叶光学[M]. 北京: 机械工业出版社, 2016: 65-93.LÜ N G. Fourieroptics[M]. Beijing: China Machine Press, 2016: 65-93(in Chinese).
[22] 陈宽. 基于微透镜阵列的激光光束整形技术研究[D]. 南京: 南京理工大学, 2015: 17-47.CHEN K. Research on laser beam shaping technology based onmicrolens array[D]. Nanjing: Nanjing University of Technology, 2015: 17-47(in Chinese).
[23] 周叶, 祝启欣, 黄中亚, 等. 基于柱面微透镜阵列的激光匀化系统设计及实验研究[ J]. 激光与红外, 2020, 50(4) : 468-492.ZHOU Y, ZHU Q X, HUANG Zh Y, et al. Design and experimental investigations of laser homogenization system based on cylindrical microlens array[J]. Laser & Infrared, 2020, 50(4): 468-492(in Chinese).