[1] 王勇, 周雪峰. 激光增材制造研究前沿与发展趋势[J]. 激光技术, 2021, 45(4): 475-484.WANG Y, ZHOU X F. Research front and trend of specific laser a-dditive manufacturing techniques[J]. Laser Technology, 2021, 45(4): 475-484(in Chinese).
[2] KORNER M E H, LAMBÁN M P, ALBAJEZ J A, et al. Systematic literature review: Integration of additive manufacturing and industry 4.0[J]. Metals, 2020, 10(8): 1061. doi: 10.3390/met10081061
[3] HANSEL A, MORI M, FUJISHIMA M, et al. Study on consistently optimum deposition conditions of typical metal material using additive/subtractive hybrid machine tool[J]. Procedia Cirp, 2016, 46(8): 579-582.
[4] WILLIAMS H, JONES E B. Additive manufacturing standards for space resource utilization[J]. Additive Manufacturing, 2019, 28(4): 676-681.
[5] 李紫光, 尹子盟. 大飞机襟翼制造质量控制技术[J]. 国际航空航天科学, 2020, 8(1): 19-24.LI Z G, YIN Z M. The method of the flaps of C919 aircraft manufacturing quality control[J]. Journal of Aerospace Science and Technology, 2020, 8(1): 19-24(in Chinese).
[6] KHALIL M, TEICHERT G H, ALLEMAN C, et al. Modeling strength and failure variability due to porosity in additively manufactured metals[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373(1): 113471-113506.
[7] PANWISAWAS C, TANG Y B T, REED R C. Metal 3D printing as a disruptive technology for superalloys[J]. Nature Communication, 2020, 11(1): 2327-2330. doi: 10.1038/s41467-020-16188-7
[8] GORSSE S, HUTCHINSON C, GOUNÉ M, et al. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys[J]. Science and Technology of Advanced Materials, 2017, 18(1): 584-610. doi: 10.1080/14686996.2017.1361305
[9] PARAB N D, ZHAO C, ROSS C, et al. Ultrafast X-ray imaging of laser-metal additive manufacturing processes[J]. Journal of Synchrotron Radiation, 2018, 25(5): 1467-1477. doi: 10.1107/S1600577518009554
[10] HONARVAR F, VARVANI-FARAHANI A. A Review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control[J]. Ultrasonics, 2020, 108(9): 106227.
[11] CHOO H, SHAM K L, BOHLING J, et al. Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel[J]. Materials & Design, 2019, 164(4): 107534.
[12] MILLON C, VANHOYE A, OBATON A F, et al. Development of laser ultrasonics inspection for online monitoring of additive manufacturing[J]. Welding in the World, 2018, 62(3): 653-661. doi: 10.1007/s40194-018-0567-9
[13] CHEN Y H, CLARK S J, SINCLAIR L, et al. Synchrotron X-ray imaging of directed energy deposition additive manufacturing of titanium alloy Ti-6242[J]. Additive Manufacturing, 2021, 41(5): 101969.
[14] MASKERY I, ABOULKHAIR N T, CORFIELD M R, et al. Quantification and characterisation of porosity in selectively laser melted Al-Si10-Mg using X-ray computed tomography[J]. Materials Cha-racterization, 2016, 111(1): 193-204.
[15] MOHAMMAD M, REZA Y, RAO P, et al. In-process monitoring of material cross-contamination defects in laser powder bed fusion[J]. Journal of Manufacturing Science & Engineering, 2018, 140(11): 111001.
[16] WALLER J, SAULSBERRY R, PARKER B, et al. Summary of NDE of additive manufacturing efforts in NASA[J]. AIP Confe-rence Proceedings, 2015, 1650(1): 51-62.
[17] RIEDER H, SPIES M, BAMBERG J, et al. On- and offline ultrasonic characterization of components built by SLM additive manufacturing[J]. AIP Conference Proceedings, 2016, 1706(1): 130002.
[18] CHABOT A, LAROCHE N, CARCREFF E, et al. Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing[J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1191-1201. doi: 10.1007/s10845-019-01505-9
[19] JAVADI Y, MOHSENI E, MACLEOD C N, et al. Continuous monitoring of an intentionally-manufactured crack using an automated welding and in-process inspection system[J]. Materials & Design, 2020, 191(7): 108655.
[20] EVERTON S, DICKENS P, TUCK C, et al. Evaluation of laser ultrasonic testing for inspection of metal additive manufacturing[J]. Proceedings of the SPIE, 2015, 9353: 935316.
[21] LEVESQUE D, BESECOND C, LORD M, et al. Inspection of additive manufactured parts using laser ultrasonics[J]. AIP Conference Proceedings, 2016, 1706(1): 130003.
[22] THEODOSIA S, YASHAR J, WILLIAM K, et al. Laser induced phased arrays for remote ultrasonic imaging of additive manufactured components[C]//57th Annual Conference of the British Institute of Non-Destructive Testing. Northampton, UK: BINDT, 2018: 174-182.
[23] PIERIS D, STRATOUDAKI T, JAVADI Y, et al. Laser induced phased arrays (LIPA) to detect nested features in additively manufactured components[J]. Materials & Design, 2020, 187(3): 108412.
[24] YU J, ZHANG D Q, LI H, et al. Detection of internal holes in additive manufactured Ti-6Al-4V part using laser ultrasonic testing[J]. Applied Sciences, 2020, 10(1): 365-376. doi: 10.3390/app10010365
[25] 阮雪茜, 林鑫, 黄春平, 等. TC4激光立体成形显微组织对超声参量的影响[J]. 中国激光, 2015, 42(1): 0103005.RUAN X Q, LIN X, HUANG Ch P, et al. Effect of microstructure of laser solid forming TC4 titanium alloy on ultrasonic parameters[J]. Chinese Journal of Lasers, 2015, 42(1): 0103005(in Chin-ese).
[26] 李文涛, 周正干. 激光增材制造钛合金构件的阵列超声检测方法研究[J]. 机械工程学报, 2020, 56(8): 141-147.LI W T, ZHOU Zh G. Research on ultrasonic array testing methods of laser additive-manufacturing titanium alloy[J]. Journal of Mechanical Engineering, 2020, 56(8): 141-147(in Chinese).
[27] 林立志, 杨平华, 韩波, 等. 激光选区熔化增材制造Ti-6Al-4V钛合金的超声检测[J]. 无损检测, 2021, 43(6): 12-15.LIN L Zh, YANG P H, HAN B, et al. Ultrasonic testing of Ti-6Al-4V titanium alloy material manufacured by selective laser melting[J]. Nondestructive Testing, 2021, 43(6): 12-15(in Chinese).