[1] |
潘邻. 激光表面改性技术的现状与展望[J]. 表面工程资讯, 2005, 5(1): 5-6.PAN L. Current status and prospect of laser surface modification technology[J]. Surface Engineering Information, 2005, 5(1): 5-6(in Chinese). |
[2] |
宋峰, 陈铭军, 陈晅, 等. 激光清洗研究综述(特邀)[J]. 红外与激光工程, 2023, 52(2): 20220835.SONG F, CHEN M J, CHEN Y, et al. Review of laser cleaning research(invited)[J]. Infrared and Laser Engineering, 2023, 52(2): 20220835(in Chinese). |
[3] |
LI Y H, LI J Y, DONG H, et al. Mechanism of paint removal by nanosecond pulsed laser lasma shock: Simulation and experiment[J]. Applied Optics, 2023, 62(11): 2855-2861. doi: 10.1364/AO.484609 |
[4] |
张志研, 王奕博, 梁浩, 等. 高重复频率脉冲激光去除低热导率涂漆[J]. 中国激光, 2019, 46(1): 0102009.ZHANG Zh Y, WANG Y B, LIANG H, et al. Removal of low thermal conductivity paint with high repetition rate pulse laser[J]. Chinese Journal of Lasers, 2019, 46(1): 0102009(in Chinese). |
[5] |
江宇宏, 何玉洋, 符永宏, 等. 激光清洗技术规模化应用发展现状(特邀)[J]. 红外与激光工程, 2023, 52(2): 20220753.JIANG Y H, HE Y Y, FU Y H, et al. Development status of large-scale application of laser cleaning technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(2): 20220753(in Chinese). |
[6] |
李悦, 吴卓颐, 储德谱, 等. 激光清洗监测技术研究进展(特邀)[J]. 红外与激光工程, 2023, 52(2): 20220784.LI Y, WU Zh Y, CHU D P, et al. Research progress of laser cleaning monitoring technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(2): 20220784(in Chinese). |
[7] |
李浩宇, 杨峰, 郭嘉伟, 等. 激光清洗的发展现状与前景[J]. 激光技术, 2021, 45(5): 654-661.LI H Y, YANG F, GUO J W, et al. Development status and prospect of laser cleaning[J]. Laser Technology, 2021, 45(5): 654-661(in Chinese). |
[8] |
FANG B Y, LU L, DING M Zh, et al. Study on corrosion resistance of rust-preventive oil under shipment and storage conditions[J]. Baosteel Technical Research, 2015, 9(1): 24-32. |
[9] |
VISWANATHAN S S. Temporary rust preventives—A retrospective[J]. Progress in Organic Coatings, 2020, 140(3): 105511. |
[10] |
陈波, 魏焕君, 耿志宇, 等. 热成形钢的脱碳影响因素分析[J]. 金属热处理, 2021, 46(2): 161-167.CHEN B, WEI H J, GENG Zh Y, et al. Analysis on factors affecting decarburization of hot forming steel[J]. Heat Treatment of Metals, 2021, 46(2): 161-167(in Chinese). |
[11] |
张杰. 金属除油工艺的研究进展[J]. 山东化工, 2015, 44(21): 48-50.ZHANG J. The research progress of metal degreasing process[J]. Shandong Chemical Industry, 2015, 44(21): 48-50(in Chinese). |
[12] |
JEROME L, BEGIN D, GERIN M M. Technical, occupational health and environmental aspects of metal degreasing with aqueous cleaners[J]. Annals of Work Exposures and Health, 2003, 47(6): 441-459. |
[13] |
GOLSTEIJN L, HUIZER D, HAUCK M, et al. Including exposure variability in the life cycle impact assessment of indoor chemical emissions: The case of metal degreasing[J]. Environment International, 2014, 71(1): 36-45. |
[14] |
RUBINO G, MARCONI M, BAIOCCO G, et al. Technical, environmental, and economic feasibility investigation of an innovative dry washing process for metal degreasing[J]. International Journal of Advanced Manufacturing Technology, 2022, 121(11): 7475-7492. |
[15] |
吴勇华, 任晓晨, 刘皓贤, 等. 激光参量对碳钢表面清洗质量的影响[J]. 激光技术, 2021, 45(4): 500-506.WU Y H, REN X Ch, LIU H X, et al. Influences of laser parameters on the cleaning quality of carbon steel surface[J]. Laser Technology, 2021, 45(4): 500-506(in Chinese). |
[16] |
刘鹏宇, 王宪伦, 张则荣. 激光清洗的机理研究进展[J]. 工业加热, 2022, 51(10): 50-53.LⅡU P Y, WANG X L, ZHANG Z R. Research progress on the mechanism of laser cleaning[J]. Industrial Heating, 2022, 51(10): 50-53(in Chinese). |
[17] |
赵海朝, 乔玉林, 杜娴, 等. 能量密度对激光清洗铝合金漆层的影响及作用机理[J]. 激光与光电子学进展, 2020, 57(13): 131403.ZHAO H Ch, QIAO Y L, DU X, et al. Effect and mechanism of energy density on the aluminum alloy paint cleaned by laser[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131403(in Chinese). |
[18] |
单腾, 王思捷, 殷凤仕, 等. 激光清洗的典型应用及对基体表面完整性影响的研究进展[J]. 材料导报, 2021, 35(11): 11163-11172.SHAN T, WANG S J, YIN F Sh, et al. A review of the application of laser cleaning and its influences on the substrate surface integrity[J]. Materials Reports, 2021, 35(11): 11163-11172(in Chinese). |
[19] |
郭嘉伟, 蔡和, 韩聚洪, 等. 基于热烧蚀效应的激光清洗仿真模型研究[J]. 红外与激光工程, 2023, 52(2): 20220779.GUO J W, CAI H, HAN J H, et al. Simulation model of laser cleaning based on thermally-induced ablation effects (invited)[J]. Infrared and Laser Engineering, 2023, 52(2): 20220779(in Chinese). |
[20] |
王宝同, 王邦文, 贾爱红, 等. 中厚板控冷过程三维温度场的数值模拟[J]. 冶金设备, 2005, 6(12): 10-13.WANG B T, WANG B W, JIA A H, et al. Numerical simulation of three-dimensional temperature field in controlled cooling process of medium-thick plate[J]. Metallurgical Equipment, 2005, 6(12): 10-13(in Chinese). |
[21] |
余万华, 张中平. 热轧钢板在加速冷却时的温度模型[J]. 北京科技大学学报, 2005, 27(5): 567-570.YU W H, ZHANG Zh P. Temperature modeling of hot rolled steel plates during accelerated cooling[J]. Journal of University of Science and Rechnology Beijing, 2005, 27(5): 567-570(in Chinese). |
[22] |
王生朝, 孙斌. Q345C钢连铸板坯热送热装过程中温度场和应力场模拟[J]. 特殊钢, 2016, 37(1): 13-16.WANG Sh Ch, SUN B. Simulation of temperature and stress fields during hot feeding and hot loading of Q345C steel continuous casting slabs[J]. Special Steel, 2016, 37(1): 13-16(in Chinese). |
[23] |
鄂红军, 朱和菊, 胡磊磊, 等. DSC法测定润滑油基础油比热容的研究[J]. 石油商技, 2015, 33(6): 80-83.E H J, ZHU H J, HU L L, et al. Determination of specific heat capacity of lubricant base oil by DSC method[J]. Petroleum Commerce and Technology, 2015, 33(6): 80-83 (in Chinese). |
[24] |
杜仲星, 谷波, 田镇, 等. R32及PVE润滑油混合物密度、比热容和黏度计算模型与分析[J]. 流体机械, 2022, 50(7): 44-49.DU Zh X, GU B, TIAN Zh, et al. Modeling and analysis of density, specific heat capacity and viscosity calculations for R32 and PVE lubricant blends[J]. Fluid Machinery, 2022, 50(7): 44-49(in Chinese). |
[25] |
程丽杰, 栾燕, 谷强, 等. 金属平均晶粒度测定方法: GB/T6394-2017[S]. 北京: 中华人民共和国国家标准, 2017: 5-17(in Chinese).CHENG L J, LUAN Y, GU Q, et al. Measurement of metal-averaged particle mean intercept: GB/T6394-2017[S]. Beijing: China Standard Press, 2017: 5-17(in Chinese). |
[26] |
崔桂彬, 鞠新华, 杨瑞, 等. 基于离子研磨技术的超低碳钢中铁素体晶粒的显示[J]. 理化检验(物理分册), 2021, 57(12): 8-11.CUI G B, JU X H, YANG R, et al. Display of ferrite grains in ultra-low carbon steelbased on ion milling technology[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2021, 57(12): 8-11(in Chinese). |