[1] MAIER S A, ATWATER H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures[J]. Journal of Applied Physics, 2005, 98(1): 011101. doi: 10.1063/1.1951057
[2] LEE H, LEE J H, JIN S M, et al. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering[J]. Nano Letters, 2013, 13(12): 6113-6121. doi: 10.1021/nl4034297
[3] TSAI W Y, HUANG J S, HUANG C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmo-nic archimedes spiral[J]. Nano Letters, 2014, 14(2): 547-552. doi: 10.1021/nl403608a
[4] PILO-PAIS M, WATSON A, DEMERS S, et al. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures[J]. Nano Letters, 2014, 14(4): 2099-2104. doi: 10.1021/nl5003069
[5] HWANG Y, HOPKINS B, WANG D, et al. Optical chirality from dark-field illumination of planar plasmonic nanostructures[J]. Laser & Photonics Reviews, 2017, 11(6): 1700216.
[6] PANARO S, NAZIR A, LIBERALE C, et al. Dark to bright mode conversion on dipolar nanoantennas: A symmetry-breaking approach[J]. ACS Photonics, 2014, 1(4): 310-314. doi: 10.1021/ph500044w
[7] FAN J A, BAO K, WU C, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Letters, 2010, 10(11): 4680-4685. doi: 10.1021/nl1029732
[8] LIU Sh D, YANG Y B, CHEN Zh H, et al. Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry[J]. The Journal of Physical Chemistry C, 2013, 117(27): 14218-14228. doi: 10.1021/jp404575v
[9] CHENG F, LIU H F, LI B H, et al. Tuning asymmetry parameter of Fano resonance of spoof surface plasmons by modes coupling[J]. A-pplied Physics Letters, 2012, 100(13): 131110. doi: 10.1063/1.3698117
[10] NGUYEN T K, LE T D, DANG P T, et al. Asymmetrically engineered metallic nanodisk clusters for plasmonic Fano resonance generation[J]. Journal of the Optical Society of America B, 2017, 34(3): 668-672. doi: 10.1364/JOSAB.34.000668
[11] ZHANG S, BAO K, HALAS N J, et al. Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 2011, 11(4): 1657-1663. doi: 10.1021/nl200135r
[12] HU L, HUANG Y, FANG L, et al. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality[J]. Scientific Reports, 2015, 5(10): 16069.
[13] KOPPENS F H L, CHANG D E, de ABAJO F J G. Graphene plasmonics: A platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8): 3370-3377. doi: 10.1021/nl201771h
[14] GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758. doi: 10.1038/nphoton.2012.262
[15] JABLAN M, BULJAN H, SOLJAČIC' M. Plasmonics in graphene at infrared frequencies[J]. Physical Review, 2009, B80(24): 245435.
[16] SHI C, HE X, PENG J, et al. Tunable terahertz hybrid graphene-metal patterns metamaterials[J]. Optics & Laser Technology, 2019, 114: 28-34.
[17] ZHAO B, ZHANG Z M. Strong plasmonic coupling between graphene ribbon array and metal gratings[J]. ACS Photonics, 2015, 2(11): 1611-1618. doi: 10.1021/acsphotonics.5b00410
[18] EMANI N K, CHUNG T F, NI X, et al. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters, 2012, 12(10): 5202-5206. doi: 10.1021/nl302322t
[19] WANG X, MENG H, DENG S, et al. Hybrid metal graphene-based tunable plasmon-induced transparency in terahertz metasurface[J]. Nanomaterials, 2019, 9(3): 385. doi: 10.3390/nano9030385
[20] 武继江, 高金霞. 金属-石墨烯光子晶体-金属结构的吸收特性[J]. 激光技术, 2019, 43(5): 614-618.WU J J, GAO J X. Absorption characteristics of metal-graphene photonic crystal-metal structures[J]. Laser Technology, 2019, 43(5): 614-618 (in Chinese).
[21] RODRIGO D, TITTL A, LIMAJ O, et al. Double-layer graphene for enhanced tunable infrared plasmonics[J]. Light: Science & Applications, 2017, 6(6): e16277.
[22] BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547. doi: 10.1021/nl400601c
[23] ASGARI S, GRANPAYEH N. Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layer[J]. IEEE Sensors Journal, 2019, 19(14): 5686-5691. doi: 10.1109/JSEN.2019.2906759
[24] 李从午, 卞立安. 基于F-P谐振与SPP共振的石墨烯双模吸收波体设计[J]. 激光技术, 2021, 45(4): 507-510.LI C W, BIAN L A. Design of graphene double-mode absorber based on F-B resonance and SPP resonance[J]. Laser Technology, 2021, 45(4): 507-510 (in Chinese).
[25] ZHOU C, LIU G, BAN G, et al. Tunable Fano resonator using multilayer graphene in the near-infrared region[J]. Applied Physics Letters, 2018, 112(10): 101904. doi: 10.1063/1.5020576
[26] WANG K, FAN W H, CHEN X, et al. Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale[J]. Optics Communications, 2019, 439(5): 61-65.
[27] LIMA J R F, BARBOSA A L R, BEZERRA C G, et al. Tuning the Fano factor of graphene via Fermi velocity modulation[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 97(3): 105-110.
[28] 卞立安, 刘培国, 陈雨薇, 等. 石墨烯介质堆栈提高系统调控Fano共振能力[J]. 激光技术, 2018, 42(2): 187-191.BIAN L A, LIU P G, CHEN Y W, et al. Improvement of system tunability for Fano resonance by graphene-dielectric stack[J]. Laser Technology, 2018, 42(2): 187-191 (in Chinese).