[1] GEIM A K, NOVOSELOV K S. The rise and rise of graphene[J]. Nature Nanotechnology, 2007, 6(3): 183-191.
[2] JANA S, THOMAS S, LEE C H, et al. B3S monolayer: Prediction of a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2019, A7(20): 12706-12712.
[3] ZHANG Y B, ZHOU M, YANG M Y, et al. Experimental realization and computational investigations of B2S2 as a new 2D material with potential applications[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32330-32340.
[4] KANSARA S, KANG H Y, RYU S J, et al. Basic guidelines of first-principles calculations for suitable selection of electrochemical Li storage materials: A review[J]. Journal of Materials Chemistry, 2023, A11(45): 24482-24518.
[5] 孙浩, 徐建明, 张宏超, 等. 连续激光辐照三结GaAs太阳电池温度场仿真[J]. 激光技术, 2018, 42(2): 239-244.SUN H, XU J M, ZHANG H Ch, et al. Simulation of temperature field of continuous laser irradiation three-junction GaAs solar cell[J]. Laser technology, 2018, 42(2): 239-244 (in Chinese).
[6] 杨欢, 陆健, 周大勇, 等. 1070 nm连续激光辐照三结GaAs太阳电池的实验研究[J]. 激光技术, 2017, 41(3): 318-321.YANG H, LU J, ZHOU D Y, et al. Experimental study of 1070 nm continuous laser irradiation of three-junction GaAs solar cells[J]. Laser Technology, 2017, 41(3): 318-321(in Chinese).
[7] 谭宇, 陆健. 连续激光辐照三结GaAs太阳电池热应力场研究[J]. 激光技术, 2020, 44(2): 250-254.TAN Y, LU J. Study on thermal stress field of three-junction GaAs solar cells irradiated by continuous laser[J]. Laser Technology, 2020, 44(2): 250-254(in Chinese).
[8] 江达飞, 方晓敏, 廖东进. 双光栅结构薄膜太阳能电池的优化[J]. 激光技术, 2019, 43(6): 850-854.JIANG D F, FANG X M, LIAO D J. Optimization of thin film solar cells with double grating structure[J]. Laser Technology, 2019, 43(6): 850-854 (in Chinese).
[9] BHANDARI A, PENG Ch, DZIEDZIC J, et al. Li nucleation on the graphite anode under potential control in Li-ion batteries[J]. Journal of Materials Chemistry, 2022, A10(21): 11426-11436.
[10] HE X J, TANG A W, LI Y, et al. Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries[J]. Applied Surface Science, 2021, 563(3): 150269.
[11] JANA S, THOMAS S, LEE C H, et al. Rational design of a PC3 monolayer: A high-capacity, rapidly charging anode material for sodium-ion batteries[J]. Carbon, 2020, 157: 420-426. doi: 10.1016/j.carbon.2019.10.086
[12] YU X H, CHEN X H, WANG X, et al. Metallic B2C monolayer as a promising anode material for Li/Na ion storage[J]. Chemical Engineering Journal, 2021, 406: 126812. doi: 10.1016/j.cej.2020.126812
[13] YUAN G H, BO T, QI X, et al. Monolayer Zr2B2: A promising two-dimensional anode material for Li-ion batteries[J]. Applied Surface Science, 2019, 480: 448-453. doi: 10.1016/j.apsusc.2019.02.222
[14] EFTELTHARI A. Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics[J]. Applied Materials Today, 2017, 8: 1-17. doi: 10.1016/j.apmt.2017.01.006
[15] VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 1-11.
[16] WANG Zh H, ZHOU X F, ZHANG X M, et al. Phagraphene: A low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted Dirac cones[J]. Nano Letters, 2015, 15(9): 6182-6186. doi: 10.1021/acs.nanolett.5b02512
[17] XU L Ch, WANG R Zh, MIAO M Sh, et al. Two dimensional Dirac carbon allotropes from graphene[J]. Nanoscale, 2014, 6(2): 1113-1118. doi: 10.1039/C3NR04463G
[18] LI X B, XIE Sh Y, ZHENG H, et al. Boron based two-dimensional crystals: Theoretical design, realization proposal and applications[J]. Nanoscale, 2015, 7(45): 18863-18871. doi: 10.1039/C5NR04359J
[19] ZHANG Zh H, YANG Y, GAO G Y, et al. Two-dimensional boron monolayers mediated by metal substrates[J]. Angewandte Chemie-International Edition, 2015, 54(44): 13214-13218.
[20] LALMI B, OUGHADDOU H, ENRIQUEZ H, et al. Epitaxial growth of a silicene sheet[J]. Applied Physics Letters, 2010, 97(22): 223109. doi: 10.1063/1.3524215
[21] DAVILA M, XIAN L, CAHANGIROV S, et al. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene[J]. New Journal of Physics, 2014, 16(9): 095002. doi: 10.1088/1367-2630/16/9/095002
[22] XU Y, YAN B H, ZHANG H J, et al. Large-gap quantum spin hall insulators in tin films[J]. Physical Review Letters, 2013, 111(13): 136804. doi: 10.1103/PhysRevLett.111.136804
[23] TAN Ch, JI G L. Semi-supervised incremental feature extraction algorithm for large-scale data stream[J]. Concurrency & Computation Practice & Experience, 2017, 29(6): e3914.
[24] TAO H C, GAO Y N, TALREJA N, et al. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion[J]. Journal of Materials Chemistry, 2017, A5(16): 7257-7284.
[25] BHATNAGAR M, GARDELLA M, GIORDANO M C, et al. Broadband and tunable light harvesting in nanorippled MoS2 ultrathin films[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13508-13516.
[26] DING W, HU L, DAI J M, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields[J]. ACS Nano, 2019, 13(2): 1694-1702.
[27] DOLAI S, MAITI P, GHORAI A, et al. Exfoliated molybdenum disulfide-wrapped CdS nanoparticles as a nano-heterojunction for photo-electrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 438-448.
[28] WANG G Zh, ZHI Y, BO M L, et al. 2D hexagonal boron nitride/cadmium sulfide heterostructure as a promising water-splitting photocatalyst[J]. Physica Status Solidi B: Basic Solid State Physics, 2020, 257(1): 1900431.
[29] CHEREDNICHENKO K A, MUKHANOV V A, WANG Zh H, et al. Discovery of new boron-rich chalcogenides: Orthorhombic B6X (X=S, Se)[J]. Scientific Reports, 2020, 10(1): 9277.
[30] FAN D, YANG Ch Ch, LU Sh H, et al. Two-dimensional boron monosulfides: semiconducting and metallic polymorphs[J]. Arxiv Preprint Arxiv, 2018, 1803: 03459.
[31] MISHRA P, SINGH D, SONVANE Y, et al. 2D monolayer boron sulfide as an efficient material for optical nanodevices[C]//AIP Conference Proceedings. New York, USA: AIP Publishing, 2020: 130039.
[32] KRESSE F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review, 1996, B54(16): 11169-11186.
[33] QIN G Zh, QIN Zh Zh, WANG H M, et al. On the diversity in the thermal transport properties of graphene: A first-principles-benchmark study testing different exchange-correlation functionals[J]. Computational Materials Science, 2018, 151: 153-159.
[34] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias[J]. Journal of Physics, 2009, 21(8): 084204.
[35] KHOSSOSSI N, BANERJEE A, BENHOURIA Y, et al. Ab initio study of a 2D h-BAs monolayer: A promising anode material for alkali-metal ion batteries[J]. Physical Chemistry Chemical Physics, 2019, 21(33): 18328-18337.
[36] CHEN Ch Ch, GAO L S, ABDURYIM E, et al. Two-dimensional PC3 monolayer as promising hosts of Li-ion storage: A first-principles calculations study[J]. Colloids and Surfaces, 2024, A685: 133313.
[37] KUAI Y, CHEN Ch Ch, GAO Sh L, et al. Two-dimensional SiP3 monolayer as promising anode with record-high capacity and fast diffusion for Alkali-ion battery[J]. Applied Surface Science, 2022, 586: 152510.
[38] LIN J H, CHEN X W, ZHANG B F, et al. Two dimensional twin T-graphene: Monolayer for visible-light photocatalytic water splitting and bulk for anode material of magnesium batteries[J]. RSC Advances, 2022, 12(47): 30349-30358.
[39] ADHIKARY S, DUTTA S, MOHAKUD S. Antiferromagnetic spin ordering in two-dimensional honeycomb lattice of SiP3[J]. Nanoscale Advances, 2021, 3(8): 2217-2221.
[40] LI H T, WANG H Y, YAN L, et al. A novel two-dimensional beryllium diphosphide (BeP2) with superconductivity: The first-principles exploration[J]. Physical Chemistry Chemical Physics, 2021, 23(22): 12834-12841.
[41] WU Y. First principles study of borene-based 2D materials as anode for lithium/sodium ion batteries[D]. Jilin: Changchun University of Science and Technology, 2020: 13-18(in Chinese).
[42] GUO Y H, BO T, WU Y Y, et al. YS2 monolayer as a high-efficient anode material for rechargeable Li-ion and Na-ion batteries[J]. Solid State Ionics, 2020, 345: 115187.
[43] POLLAK E, GENG B S, JEON K J, et al. The interaction of Li+ with single-layer and few-layer graphene[J]. Nano Letters, 2010, 10(9): 3386-3388.
[44] YI Sh Y, LIU G D, LIU Zh X, et al. Double-layer honeycomb AIP: A promising anode material for Li-, Na-, and K-ion batteries[J]. Journal Physical Chemistry, 2020, C124(5): 2978-2986.
[45] CHEN Q Y, WANG H Ch, LI H, et al. Two-dimensional MnC as a potential anode material for Na/K-ion batteries: A theoretical study[J]. Journal of Molecular Modeling, 2020, 26(4): 1-6.
[46] MAKAREMI M, MORTAZAVI B, SINGH C V. 2D hydrogenated graphene-like borophene as a high capacity anode material for improved Li/Na ion batteries: A first principles study[J]. Materials Today Energy, 2018, 8: 22-28.
[47] CHEN Ch Ch, GUU Sh N, et al. Metallic 1H-BeP2 monolayer as a potential anode material for Li-ion/Na-ion batteries: A first principles study[J]. Colloids and Surfaces, 2023, A662: 131037.