[1] JIAO X M, GU H X. Ship welding technology and selection of welding materials[J]. Marine Equipment/Materials & Marketing, 2021, 29(1): 53-54(in Chinese).
[2] LI J, HONG Sh H, SHEN J P. Applications of composite materials on marine ships[J]. Mechanical and Electrical Equipment, 2019, 36(4): 57-59(in Chinese).
[3] MA X T, YAN D J, MENG X Ch, et al. Progress on the control of intermetallic compounds inaluminum/steel friction stir welding[J]. Transactions of the China Welding Institution, 2020, 41(7): 1-11(in Chinese).
[4] FENG F Y, CHEN Y X. Research status of aluminum/steel dissimilar metal welding technology[J]. Welding Technology, 2021, 50(1): 1-8(in Chinese).
[5] YANG H L, JIN X Zh, XIU T F, et al. Numerical simulation of fiber laser welding of steel /aluminum dissimilar metals[J]. Laser Techno-logy, 2016, 40(4): 606-609 (in Chinese).
[6] ZHANG G D, CHENG G H, ZHANG W. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 2020, 13(6): 1209-1223(in Chinese). doi: 10.37188/CO.2020-0131
[7] WANG J C. Development and expectation of laser welding technology[J]. Laser Technology, 2001, 25(1): 48-54(in Chinese).
[8] BA Y, ZHAN J M, SHI W Q, et al. Advances in the application of laser processing technology in agricultural machinery manufacturing[J]. Forum of South China, 2020, 51(5): 7-8(in Chinese).
[9] LIU B L, XIE S J, YAO J H. Application and development trend of laser welding[J]. Laser & Optoelectronics Progress, 2005, 42(9): 43-47(in Chinese).
[10] LI C, ZHOU D, MENG X M, et al. Research on laser beam wobble lap welding processes of stainless steel sheets[J]. China Mechanical Engineering, 2019, 30(11): 1359-1366(in Chinese).
[11] LI J Zh, LIU Y B, SUN Q J, et al. Effects of laser beam wobble on weld formation characteristics, microstructure, and strength of aluminum alloy/steel joint[J]. Chinese Journal of Lasers, 2020, 47(4): 0402010(in Chinese). doi: 10.3788/CJL202047.0402010
[12] CHEN J Y, WANG X N, LV F, et al. Microstructure and mechanical properties of welded joints of low carbon steels welded by laser beam oscillating welding[J]. Chinese Journal of Lasers, 2020, 47(3): 0302006(in Chinese). doi: 10.3788/CJL202047.0302006
[13] ZAHGN Ch, YU Y, CHEN C, et al. Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 2020, 278: 116382. doi: 10.1016/j.jmatprotec.2019.116382
[14] LI J Zh, SUN Q J, LIU Y B, et al. Melt flow and microstructural characteristics in beam oscillation superimposed laser welding of 304 stainless steel[J]. Journal of Manufacturing Processes, 2020, 50: 629-637. doi: 10.1016/j.jmapro.2019.12.053
[15] ZHANG Y. Discussion on the development and prospect of laser welding technology[J]. Scientific and Technological Innovation, 2019(22): 180-181(in Chinese).
[16] HAN Sh G, YANG Y Q, LUO Z Y, et al. Effect of linear heat input on microstructure and performance of joint conducted by dual-beam laser welding[J]. Materials Reports, 2021, 35(2): 2109-2114(in Chinese).
[17] YUE Y, ZHANG Zh L, ZHANG K K, et al. Microstructure and pro-perty of 1.6%C ultrahigh carbon steel after laser surface treating[J]. Laser Technology, 2010, 34(4): 514-516(in Chinese).
[18] HUAN P Ch, CHEN W G, WANG X N, et al. Effect of martensite content on microstructure and properties of laser welded dual-phase steel joints[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111406(in Chinese).
[19] XU L, LIU X X, LI Q F, et al. Process study on laser welding of high strength galvanized steel with powder filling[J]. Laser Technology, 2014, 38(1): 1-5(in Chinese).
[20] YU J Sh, QIU Ch J, ZHOU J, et al. Analysis on microstructure and tensile fracture characteristic of 304 stainless steel specimens made by laser rapid forming[J]. Laser & Optoelectronics Progress, 2012, 49(1): 011402(in Chinese).