[1] PATHANIA A, KUMAR S A, NAGESHA B K, et al. Reclamation of titanium alloy based aerospace parts using laser based metal deposition methodology[J]. Materials Today: Proceedings, 2021, 45: 4886-4892. doi: 10.1016/j.matpr.2021.01.354
[2] AVERY D Z, CLEEK C E, PHILLIPS B J, et al. Evaluation of microstructure and mechanical properties of Al-Zn-Mg-Cu alloy repaired via additive friction stir deposition[J]. Journal of Engineering Materials and Technology, 2022, 144(3): 031003. doi: 10.1115/1.4052816
[3] TIAN J Y, XU P, CHEN J, et al. Microstructure and phase transformation behaviour of a Fe/Mn/Si/Cr/Ni alloy coating by laser cladding[J]. Optics and Lasers in Engineering, 2019, 122: 97-104. doi: 10.1016/j.optlaseng.2019.06.003
[4] SMUROV I. Laser cladding and laser assisted direct manufacturing[J]. Surface and Coatings Technology, 2008, 202(18): 4496-4502. doi: 10.1016/j.surfcoat.2008.04.033
[5] CALLEJA A, TABERNERO I, FERNÁNDEZ A, et al. Improvement of strategies and parameters for multi-axis laser cladding operations[J]. Optics and Lasers in Engineering, 2014, 56: 113-120. doi: 10.1016/j.optlaseng.2013.12.017
[6] LIU Ch Y, XU P, ZHENG D Y, et al. Study on microstructure and properties of a Fe-based SMA/PZT composite coating produced by laser cladding[J]. Journal of Alloys and Compounds, 2020, 831: 154813. doi: 10.1016/j.jallcom.2020.154813
[7] ROBINSON J S, PIRLING T, TRUMAN C E, et al. Residual stress relief in the aluminium alloy 7075[J]. Materials Science and Technology, 2017, 33(15): 1765-1775. doi: 10.1080/02670836.2017.1318243
[8] TANG F, LU A L, MEI J F, et al. Research on residual stress reduction by a low frequency alternating magnetic field[J]. Journal of Materials Processing Technology, 1998, 74(1/3): 255-258.
[9] PARK S J, MURAISHI S. Influence of residual stress around constituent particles on recrystallization and grain growth in Al-Mn-based a-lloy during annealing[J]. Materials, 2021, 14(7): 1701. doi: 10.3390/ma14071701
[10] ROEHLING J D, SMITH W L, ROEHLING T T, et al. Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2019, 28: 228-235. doi: 10.1016/j.addma.2019.05.009
[11] MARTINEZ HURTADO A, FRANCIS J A, STEVENS N P C. An assessment of residual stress mitigation strategies for laser clad depo-sits[J]. Materials Science and Technology, 2016, 32(14): 1484-1494. doi: 10.1080/02670836.2016.1192766
[12] XU P, JU H, LIN Ch X, et al. In-situ synthesis of Fe-Mn-Si-Cr-Ni shape memory alloy functional coating by laser cladding[J]. Chinese Optics Letters, 2014, 12(4): 041403. doi: 10.3788/COL201412.041403
[13] JU H, LIN C X, ZHANG J Q, et al. Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing[J]. Optoelectronics Letters, 2016, 12(5): 344-348. doi: 10.1007/s11801-016-6131-1
[14] TIAN J Y, XU P, CHEN J H, et al. Microstructure and phase transformation behaviour of a Fe/Mn/Si/Cr/Ni alloy coating by laser cladding[J]. Optics and Lasers in Engineering, 2019, 122: 97-104. doi: 10.1016/j.optlaseng.2019.06.003
[15] LIU Ch Y, XU P, ZHA G Q, et al. Microstructure and properties of a Ti doped Fe-based SMA coating produced by laser cladding[J]. Journal of Materials Research and Technology, 2021, 14: 2441-2450. doi: 10.1016/j.jmrt.2021.07.138
[16] LIU Ch Y, XU P, LISh B, et al. Evading stress-property tradeoff in a SMA/PZT laser cladding coating via phase transformations[J]. Surface and Coatings Technology, 2022, 436: 128313. doi: 10.1016/j.surfcoat.2022.128313
[17] BALARAM V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005
[18] YANG Y W, YANG M L, HE Ch X, et al. Rare earth improves strength and creep resistance of additively manufactured Zn implants[J]. Composites Part B: Engineering, 2021, 216: 108882. doi: 10.1016/j.compositesb.2021.108882
[19] ZHANGZh Y, LU X Ch, HAN B L, et al. Rare earth effect on the microstructure and wear resistance of Ni-based coatings[J]. Materials Science and Engineering, 2007, A454: 194-202.
[20] DAS A K. Effect of rare earth oxide additive in coating deposited by laser cladding: A review[J]. Materials Today: Proceedings, 2022, 52: 1558-1564. doi: 10.1016/j.matpr.2021.11.236
[21] WANG K L, ZHANG Q B, SUN M L, et al. Rare earth elements modification of laser-clad nickel-based alloy coatings[J]. Applied Surface Science, 2001, 174(3/4): 191-200.
[22] CHEN S Ch, YE H X, LIN X Q. Effect of rare earth and alloying elements on the thermal conductivity of austenitic medium manganese steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24: 670-674. doi: 10.1007/s12613-017-1449-7
[23] GE M Q, GUO X F, YAN Y H. Preparation and study on the structure and properties of rare-earth luminescent fiber[J]. Textile Research Journal, 2012, 82(7): 677-684. doi: 10.1177/0040517511429606
[24] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.YU X, ZHANG Zh H, XIE J X. Microstructure, ordered structure and warm tensile ductility of Fe-6.5% Si alloy with various Ce content[J]. Acta Metallurgica Sinica, 2017, 53(8): 927-936(in Ch-inese).
[25] HAMDY A S, HUSSIEN H M. Deposition, characterization and electrochemical properties of permanganate-based coating treatments over ZE41 Mg-Zn-rare earth alloy[J]. International Journal of Electrochemical Science, 2013, 8: 11386-11402. doi: 10.1016/S1452-3981(23)13192-0
[26] JIN G, LU B W, HOU D D, et al. Influence of rare earths addition on residual stress of Fe-based coating prepared by brush plating technology[J]. Journal of Rare Earths, 2016, 34(3): 336-340. doi: 10.1016/S1002-0721(16)60033-9
[27] WANG K L, ZHANG Q B, SUN M L, et al. Microstructural characteristics of laser clad coatings with rare earth metal elements[J]. Journal of Materials Processing Technology, 2003, 139(1/3): 448-452.
[28] 陈顺高, 张晓明, 郑启池, 等. CeO2对激光熔覆Ni60合金涂层组织及性能的影响[J]. 激光技术, 2017, 41(6): 904-908.CHEN Sh G, ZHANG X M, ZHENG Q Ch, et al. Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding[J]. Laser Technology, 2017, 41(6): 904-908(in Chinese).
[29] 宋传旺, 李明喜. 纳米CeO2对激光熔覆Ni基合金层组织与性能的影响[J]. 激光技术, 2006, 30(3): 228-231. doi: 10.3969/j.issn.1001-3806.2006.03.024SONG Ch W, LI M X, Effect of nano-CeO2 on the microstructure and properties of laser clad nickel-based alloy coating[J]. Laser Technology, 2006, 30(3): 228-231(in Chinese). doi: 10.3969/j.issn.1001-3806.2006.03.024
[30] QUAZI M M, FAZAL M A, HASEEB A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review[J]. Journal of Rare Earths, 2016, 34(6): 549-564. doi: 10.1016/S1002-0721(16)60061-3
[31] TIAN J Y, XU P, LIU Q B. Effects of stress-induced solid phase transformations on residual stress in laser cladding a Fe-Mn-Si-Cr-Ni alloy coating[J]. Materials & Design, 2020, 193: 108824.
[32] NAIK S N, WALLEY S M. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals[J]. Journal of Materials Science, 2020, 55(7): 2661-2681. doi: 10.1007/s10853-019-04160-w
[33] WANG Q, YANG J, NIU W J, et al. Effect of La2O3 on microstructure and properties of Fe-based alloy coatings by laser cladding[J]. Optik, 2021, 245: 167653. doi: 10.1016/j.ijleo.2021.167653
[34] 徐祖耀. fcc(γ)→hcp(ε)马氏体相变[J]. 中国科学, 1997, E27(4): 289-293.XU Zh Y. fcc(γ)→hcp(ε) Martensitic transformation[J]. Chin-ese Science, 1997, E27(4): 289-293(in Chinese).
[35] CHENG X Y, HE Y, SONG R X, et al. Study of mechanical cha-racter and corrosion properties of La2O3 nanoparticle reinforced Ni-W composite coatings[J]. Colloids and Surfaces, 2022, A652: 129799.
[36] CHEN L, CHEN W G, LI D Y, et al. Effect of nano- La2O3 doping on the tribological behavior of laser cladded WC-12Co coating on 65Mn steel under water lubrication condition[J]. Tribology International, 2022, 169: 107428. doi: 10.1016/j.triboint.2022.107428
[37] 位超群. 钛合金表面激光熔覆原位合成Ti3Al基陶瓷复合涂层改性研究[D]. 大连: 大连理工大学, 2018.WEI Ch Q. Research on modification of in situ synthesized Ti3Al based ceramic composite coating on titanium alloy surface by laser cladding[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
[38] ZHAO G M, WANG K L. Effect of La2O3 on corrosion resistance of laser clad ferrite-based alloy coatings[J]. Corrosion Science, 2006, 48(2): 273-284. doi: 10.1016/j.corsci.2005.01.002
[39] WANG D Zh, HU Q W, ZENG X Y. Residual stress and cracking behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding[J]. Surface and Coatings Technology, 2015, 274: 51-59. doi: 10.1016/j.surfcoat.2015.04.035
[40] ROSSINI N S, DASSISTI M, BENYOUNIS K Y, et al. Methods of measuring residual stresses in components[J]. Materials & Design, 2012, 35: 572-588.
[41] ZHU J G, XIE H M, HU Zh X, et al. Residual stress in thermal spray coatings measured by curvature based on 3D digital image co-rrelation technique[J]. Surface and Coatings Technology, 2011, 206(6): 1396-1402. doi: 10.1016/j.surfcoat.2011.08.062
[42] ZHANG H, PAN Y J, ZHANG Y, et al. Microstructure, toughness, and tribological properties of laser cladded Mo2FeB2-based composite coating with in situ synthesized WC and La2O3 addition[J]. Surface and Coatings Technology, 2022, 449: 128947. doi: 10.1016/j.surfcoat.2022.128947
[43] GUAN Sh, NELSON B J. Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators[J]. Journal of Magnetism and Magnetic Materials, 2005, 292: 49-58. doi: 10.1016/j.jmmm.2004.10.094