[1] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901. doi: 10.1103/PhysRevLett.99.213901
[2] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981. doi: 10.1364/OL.32.000979
[3] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209. doi: 10.1364/OL.33.000207
[4] WANG X Y, TU J L, YU X, et al. Optimizing ballistic motion of partially coherent multiple Airy beams by quadratic and linear phases[J]. Annalen der Physik, 2021, 533(9): 2100165. doi: 10.1002/andp.202100165
[5] LI D H, BONGIOVANNI D, GOUTSOULAS M, et al. Direct comparison of anti-diffracting optical pin beams and abruptly autofocusing beams[J]. OSA Continuum, 2020, 3(6): 1525-1535. doi: 10.1364/OSAC.391878
[6] ZHANG Z, LIANG X L, GOUTSOULAS M, et al. Robust propagation of pin-like optical beam through atmospheric turbulence[J]. APL Photonics, 2019, 4(7): 076103. doi: 10.1063/1.5095996
[7] LIU X, XIA D N, MONFARED Y E, et al. Generation of novel partially coherent truncated Airy beams via Fourier phase processing[J]. Optics Express, 2020, 28(7): 9777-9785. doi: 10.1364/OE.390477
[8] WANG Y F, JIANG Y F. Dual autofocusing circular Airy beams with different initial launch angles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278: 108010. doi: 10.1016/j.jqsrt.2021.108010
[9] EFREMIDIS N K, CHEN Z G, MORDECHAI S, et al. Airy beams and accelerating waves: An overview of recent advances[J]. Optica, 2019, 6(5): 686-701. doi: 10.1364/OPTICA.6.000686
[10] 张雅凯, 郭苗军, 李晋红, 等. 扭曲多高斯光束在梯度折射率光纤中的传输特性[J]. 激光技术, 2022, 46(5): 594-600.ZHANG Y K, GUO M J, LI J H, et al. Propagation characteristics of twisted multi-Gaussian beams in gradient index fibers[J]. Laser Technology, 2022, 46(5): 594-600 (in Chinese).
[11] 王埼臻, 田恺婧, 夏雄平. 高斯型激光圆孔衍射中的光束畸变调控研究[J]. 应用光学, 2022, 43(1): 119-123.WANG Q Zh, TIAN K J, XIA X P. Beam distortion regulation in Gaussian lasercircular aperture diffraction[J]. Journal of Applied Optics, 2022, 43(1): 119-123(in Chinese).
[12] EFREMIDIS N K, CHRISTODOULIDES D N. Abruptly autofocusing waves[J]. Optics Letters, 2010, 35(23): 4045-4047. doi: 10.1364/OL.35.004045
[13] PAPAZOGLOU D G, EFREMIDIS N K, CHRISTODOULIDES D N, et al. Observation of abruptly autofocusing waves[J]. Optics Letters, 2011, 36(10): 1842-1844. doi: 10.1364/OL.36.001842
[14] 张泽, 刘京郊, 张鹏, 等. 多艾里光束合成自聚焦光束的实验实现[J]. 物理学报, 2013, 62(3): 034209.ZHANG Z, LIU J J, ZHANG P, et al. Generation of autofocusing beams with multi-Airy beams[J]. Acta Physica Sinica, 2013, 62(3): 034209 (in Chinese).
[15] HU Y, ZHANG P, LOU C B, et al. Optimal control of the ballistic motion of Airy beams[J]. Optics Letters, 2010, 35(13): 2260-2262. doi: 10.1364/OL.35.002260
[16] CHEN C Y, YANG H M, KAVEHRAD M, et al. Propagation of radial Airy array beams through atmospheric turbulence[J]. Optics and Lasers in Engineering, 2014, 52(1): 106-114.
[17] EZ-ZARIY L, HRICHA Z, BELAFHAL A. Novel finite Airy array beams generated from Gaussian array beams illuminating an optical Airy transform system[J]. Progress in Electromagnetics Research, 2016, M49: 41-50.
[18] 吴鹏飞, 柯熙政, 宋强强. 自聚焦阵列艾里光束的实验实现[J]. 中国激光, 2018, 45(6): 0605002.WU P F, KE X Zh, SONG Q Q. Realization of experiment on auto-focusing array Airy beam[J]. Chinese Journal of Lasers, 2018, 45(6): 0605002 (in Chinese).
[19] DAFNE A, ÓSCAR M, PABLO V. Abruptly autofocusing beams from phase perturbations having forced symmetry[J]. Optics Letters, 2019, 44(15): 3733-3736. doi: 10.1364/OL.44.003733
[20] XU D L, LIU Y J, MO Z W, et al. Shaping autofocusing Airy beams through the modification of Fourier spectrum[J]. Optics Express, 2022, 30(1): 232-242. doi: 10.1364/OE.444396
[21] WANG L, JI X L, LI X Q, et al. Focusing and self-healing characteristics of Airy array beams propagating in self-focusing media[J]. Applied Physics, 2019, B125(9): 165.
[22] 鲁强. 基于LCOS的Airy光束阵列生成及其光强闪烁特性的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017: 35-47.LU Q. Generation of Airy beam arrays based on a LCOS device and research on their scintillation characteristics[D]. Changchun: Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences, 2017: 35-47(in Chinese).
[23] 施瑶瑶, 吴彤, 刘友文, 等. 艾里光束自弯曲性质的控制[J]. 光子学报, 2013, 42(12): 1401-1407.SHI Y Y, WU T, LIU Y W, et al. Control of self-bending Airy beams[J]. Acta Photonica Sinica, 2013, 42(12): 1401-1407(in Chinese).
[24] 姜楠, 李晓英, 牛春晖, 等. 大气湍流对激光空间传输特性影响的实验研究[J]. 激光技术, 2022, 46(5): 708-712.JIANG N, LI X Y, NIU Ch H, et al. Experimental study on the influence of atmospheric turbulence on laser spatial transmission characteristics[J]. Laser Technology, 2022, 46(5): 708-712(in Chinese).
[25] 郑崇辉, 王天枢, 刘哲绮, 等. 深度迁移学习方法识别轨道角动量光束[J]. 光电工程, 2022, 49 (6): 210409.ZHENG Ch H, WANG T Sh, LIU Zh Q, et al. Deep transfer learning method to identify orbital angular momentum beams[J]. Opto-Electronic Engineering, 2022, 49(6): 210409 (in Chinese).
[26] 王鑫. Airy光束自聚焦特性研究[D]. 杭州: 浙江农林大学, 2022: 51-57.WANG X. Research on self-focusing characteristics of Airy beam[D]. Hangzhou: Zhejiang A & F University, 2022: 51-57(in Chinese).
[27] 陈鸣. 非Kolmogorov湍流对激光大气传输影响的模拟分析[D]. 长沙: 国防科技大学, 2017: 12-17.CHEN M. Numerical analysis of the influence of non-Kolmogorov turbulence on laser propagation in atmosphere[D]. Changsha: National University of Defense Technology, 2017: 12-17(in Chinese).