[1] 周礼君, 赵晴, 杜楠, 等. TC4钛合金化学铣切槽液调整与再生[J]. 表面技术, 2018, 47(4): 190-195. doi: 10.16490/j.cnki.issn.1001-3660.2018.04.028ZHOU L J, ZHAO Q, DU N, et al. Adjustment and regeneration of TC4 titanium alloy chemical milling groove fluid[J]. Surface Technology, 2018, 47(4): 190-195(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2018.04.028
[2] 刘会军, 乔永莲, 董宇, 等. 芬顿氧化法处理铝合金化铣清洗液的研究[J]. 表面技术, 2017, 46(2): 220-223. doi: 10.16490/j.cnki.issn.1001-3660.2017.02.037LIU H J, QIAO Y L, DONG Y, et al. Study on treatment of aluminum alloy milling cleaning fluid by fenton oxidation[J]. Surface Technology, 2017, 46(2): 220-223(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2017.02.037
[3] 易慧芝, 邓飞跃, 张忠亭. 2197铝锂合金化学铣切工艺研究[J]. 表面技术, 2010, 39(4): 73-76. doi: 10.3969/j.issn.1001-3660.2010.04.022YI H Zh, DENG F Y, ZHANG Zh T. Research on chemical milling technology of 2197 Al-Li alloy[J]. Surface Technology, 2010, 39(4): 73-76(in Chinese). doi: 10.3969/j.issn.1001-3660.2010.04.022
[4] LI Q S, WANG J H, HU W B. Optimizations of electric current assisted chemical milling condition of 2219 aluminum alloy[J]. Journal of Materials Processing Technology, 2016, 249: 379-385.
[5] HOT J, DASQUE A, TOPALOV J, et al. Titanium valorization: From chemical milling baths to air depollution applications[J]. Journal of Cleaner Production, 2020, 249: 119344. doi: 10.1016/j.jclepro.2019.119344
[6] EVANGELOS N, ARISTOMENIS A. FEM modeling and simulation of kerf formation in the nanosecond pulsed laser engraving process[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 236-249. doi: 10.1016/j.cirpj.2021.06.014
[7] 翟兆阳, 梅雪松, 王文君, 等. 碳化硅陶瓷基复合材料激光刻蚀技术研究进展[J]. 中国激光, 2020, 47(6): 600002.ZHAI Zh Y, MEI X S, WANG W J, et al. Research progress of laser etching technology of silicon carbide ceramic matrix composites[J]. Chinese Journal of Lasers, 2020, 47(6): 600002(in Chinese).
[8] ZHAI Z Y, WANG W J, ZHAO J, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser[J]. Composites, 2017, A102: 117-125.
[9] ZHAI Z Y, WEI C, ZHANG Y C, et al. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science, 2020, 502: 144131. doi: 10.1016/j.apsusc.2019.144131
[10] LIU C, ZHANG X Z, GAO L, et al. Feasibility of micro-hole machining in fiber laser trepan drilling of 2.5D Cf/SiC composite: Experimental investigation and optimization[J]. Optik, 2021, 242: 167186. doi: 10.1016/j.ijleo.2021.167186
[11] CHEONG H G, CHU C N, KWON K K, et al. Micro-structuring silicon compound ceramics using nanosecond pulsed laser assisted by hydrothermal reaction[J]. Journal of Manufacturing Processes, 2020, 50: 34-46.
[12] 李浩宇, 杨峰, 郭嘉伟, 等. 激光清洗的发展现状与前景[J]. 激光技术, 2021, 45(5): 654-661.LI H Y, YANG F, GUO J W, et al. The development status and prospect of laser cleaning[J]. Laser Technology, 2021, 45(5): 654-661(in Chinese).
[13] 朱小伟, 胡龙, 杨文峰, 等. 基于CFRP纤维编制网格分块扫描的激光除胶工艺算法[J]. 激光技术, 2021, 45(6): 745-750.ZHU X W, HU L, YANG W F, et al. Laser degumming process algorithm based on block scanning of CFRP fiber woven mesh[J]. Laser Technology, 2021, 45(6): 745-750(in Chinese).
[14] KIRILLOV A G, SAKEVICH V N, TROCHIMCZUK R. Automated laser engraving system for the calibration and manufacturing of nonlinear scales for electrical measuring instruments[J]. Proceedings of the Institution of Mechanical Engineers, 2019, E233(4): 849-856.
[15] 洪帅, 邹松华, 王帅东, 等. 铝合金表面化铣保护胶层激光刻型的可行性分析[J]. 电镀与涂饰, 2018, 37(24): 1139-1142.HONG Sh, ZOU S H, WANG Sh D, et al. Feasibility analysis of laser engraving on aluminum alloy surface milling protective adhesive layer[J]. Plating and Finishing, 2018, 37(24): 1139-1142(in Chinese).
[16] 姚芳萍, 房立金, 李金华, 等. 激光功率对激光熔覆Ni基涂层温度场和应力场的影响[J]. 塑性工程学报, 2021, 28(11): 87-94.YAO F P, FANG L J, LI J H, et al. Effect of laser power on temperature field and stress field of laser cladding Ni-based coatings[J]. Journal of Plastic Engineering, 2021, 28(11): 87-94(in Ch-inese).
[17] 刘冬冬. 热障涂层微观形貌的热力行为研究及数值模拟[D]. 成都: 西南交通大学, 2018: 45-56.LIU D D. Thermal behavior study and numerical simulation of thermal barrier coating micro topography[D]. Chengdu: Southwest Jiaotong University, 2018: 45-56(in Chinese).
[18] XIE L S, CHEN X Y, YAN H P, et al. Experimental research on the technical parameters of laser engraving[J]. Journal of Physics, 2020, 1646(1): 012091.
[19] 吴涛. 基于铁基复合材料激光熔覆多物理场耦合数值仿真[D]. 上海: 华东交通大学, 2020: 21-23.WU T. Numerical simulation of multiphysics coupling based on laser cladding of iron matrix composites[D]. Shanghai: East China Jiaotong University, 2020: 21-23(in Chinese).
[20] CHAI Q, FANG C, QIU X L, et al. Modeling of temperature field and profile of Ni60AA formed on cylindrical 316 stainless steel by laser cladding[J]. Surface and Coatings Technology, 2021, 428: 127865.
[21] 廖红星, 宋鹏, 周会会, 等. 陶瓷层与界面孔隙率对热障涂层寿命及其失效机制的影响[J]. 复合材料学报, 2016, 33(8): 1785-1793.LIAO H X, SONG P, ZHOU H H, et al. Effects of ceramic layer and interface porosity on the life and failure mechanisms of thermal barrier coatings[J]. Journal of Composite Materials, 2016, 33(8): 1785-1793(in Chinese).
[22] RAD M R, FARRAHIA G H, AZADI M, et al. Stress analysis of thermal barrier coating system subjected to out-of-phase thermo-mechanical loadings considering roughness and porosity effect[J]. Surface and Coatings Technology, 2015, 262: 77-86.
[23] WANG R J, DUAN W Q, WANG K D, et al. Computational and experimental study on hole evolution and delamination in laser drilling of thermal barrier coated nickel superalloy[J]. Optics and Lasers in Engineering, 2018, 107: 161-175.