[1] |
ORTOLANI C, VITALE M. The importance of local scale for assessing, monitoring and predicting of air quality in urban areas[J]. Sustainable Cities and Society, 2016, 26(1): 150-160. |
[2] |
OTTINGER G, SARANTSCHIN E. Exposing infrastructure: How activists and experts connect ambient air monitoring and environmental health[J]. Environmental Sociology, 2017, 3(2): 155-165. doi: 10.1080/23251042.2016.1226690 |
[3] |
TRTICA M S, RADAK B, MILOVANOVIC D, et al. Laser-based optical techniques for the detection of chemical agents*[J]. The European Physical Journal Plus, 2018, 133(7): 268. doi: 10.1140/epjp/i2018-12145-4 |
[4] |
GAUDIO P. Cyber and chemical, biological, radiological, nuclear, explosives challenges[M]. Heidelberg, Germany: Springer, 2017: 155-177. |
[5] |
LIU Q W, CHEN Y F, WANG J, et al. Design and implementation of NO2 differential absorption lidar sources[J]. Laser Technology, 2018, 42(4): 433-439 (in Chinese). |
[6] |
ZHANG Y, YANG Z H, LI X F, et al. Development of lidar detection technology for chemical/biological agents[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030002 (in Chinese). |
[7] |
PUSHKARSKY M, WEBBER M, PATEL C K N. High-sensitivity high-selectivity detection of CWAs and TICs using tunable laser photoacoustic spectroscopy[J]. Proceedings of the SPIE, 2005, 5732: 93-107. doi: 10.1117/12.582680 |
[8] |
TONG W H, JIANG D, ZHOU D F, et al. Study on the chemical gas detecting system by CO2 DIAL[J]. Laser Technology, 2007, 31(5): 479-482 (in Chinese). |
[9] |
FUJⅡ T, FUKUCHI T. Laser remote sensing[M]. Boca Raton, USA: CRC Press, 2005: 141-196. |
[10] |
LIU L L, YANG J, HUANG J, et al. Analysis of SO2 and NO2 concentration profiles in Huainan detected by a lidar[J]. Laser Technology, 2019, 43(3): 353-358 (in Chinese). |
[11] |
VASIL'EV B I, MANNOUN O. IR differential-absorption lidars for ecological monitoring of the environment[J]. Quantum Electronics, 2006, 36(9): 801-820. doi: 10.1070/QE2006v036n09ABEH006577 |
[12] |
HUANG B K.Research progress of laser detecting typical gases in atmosphere[J].Laser and Infrared, 2012, 42(11):1222-1225 (in Chinese). |
[13] |
WOJTANOWSKI J, ZYGMUNT M, KOPCZYN'SKI K, et al. Optical stand-off detection of biological and chemical hazards—Prospects and concerns[C]//2018 Baltic URSI Symposium (URSI). New York, USA: IEEE, 2018: 100-105. |
[14] |
FAIST J. Quantum cascade lasers[M]. Oxford, UK: Oxford University Press, 2013:9-10. |
[15] |
PARRACINO S, GELFUSA M, LUNGARONI M, et al. First tests of a multi-wavelength mini-DIAL system for the automatic detection of greenhouse gases[J]. Proceedings of the SPIE, 2017, 10424: 1042406. |
[16] |
BOREYSHO A S, CHAKCHIR S Y, KONYAEV M A, et al. Optical heterodyning in differential tunable CO2 laser systems[J]. Proceedings of the SPIE, 2006, 6160: 61602R. |
[17] |
BERNASCOLLE P F. CWA stand-off detection, a new figure-of-merit: the field surface scanning rate[J]. Proceedings of the SPIE, 2013, 8710: 871008. doi: 10.1117/12.2018305 |
[18] |
VEERABUTHIRAN S, RAZDAN A K. LIDAR for detection of chemical and biological warfare agents[J]. Defence Science Journal, 2011, 61(3): 241-250. doi: 10.14429/dsj.61.556 |
[19] |
VEERABUTHIRAN S, RAZDAN A K, JINDAL M K, et al. Open field testing of mid IR DIAL for remote detection of thiodiglycol vapor plumes in the topographic target configuration[J]. Sensors and Actuators, 2019, B298(1):126833. |
[20] |
FAIST J, CAPASSO F, SIVCO D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556. doi: 10.1126/science.264.5158.553 |
[21] |
SUBRAMANIAM T K. Quantum cascade laser in atmospheric trace gas analysis[J]. Journal of Environment, 2015, 1(1): 1-4. |
[22] |
GOYAL A K, KOTIDIS P, DEUTSCH E R, et al. Detection of chemical clouds using widely tunable quantum cascade lasers[J]. Proceedings of the SPIE, 2015, 9455: 94550L. |
[23] |
MICHEL A P M, MILLER D J, SUN K, et al. Long-path quantum cascade laser-based sensor for methane measurements[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(11): 2373-2384. doi: 10.1175/JTECH-D-16-0024.1 |
[24] |
GRASSO R J. Defence and security applications of quantum cascade lasers detection of chemical clouds using widely tunable quantum cascade lasers[J]. Proceedings of the SPIE, 2016, 9933: 99330F. |
[25] |
MA F M, CHEN Y, YANG Z H, et al. Latest development of laser Doppler wind measurement technology[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180003 (in Chinese). |
[26] |
GAO P, HU Y H, ZHAO N X, et al. Accuracy analysis of all-fiber differential absorption lidar for atmospheric component[J]. Acta Optica Sinica, 2014, 34(3): 0301003 (in Chinese). |
[27] |
HU Y, DONG X, ZHAO N, et al. Fast retrieval of atmospheric CO2 concentration based on a near-infrared all-fiber integrated path coherent differential absorption lidar[J]. Infrared Physics & Technology, 2018, 92(1): 429-435. |
[28] |
IMAKI M, KOJIMA R, YANAGISAWA T, et al. Preliminary study on ground based coherent differential absorption LIDAR for vertical profiling of water vapor density using 1.53μm wavelength[C]//18th Coherent Laser Radar Conference. Montgomerie, USA: Lockheed Martin Coherent Technologies, 2016: 1-5. |
[29] |
AMEDIEK A, EHRET G, FIX A, et al. CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: Measurement performance and quantification of strong point source emissions[J]. Applied Optics, 2017, 56(18): 5182-5197. |