[1] MAILLOUX R J. Phased array antenna handbook[M]. 2nd ed. Norwood (MA), USA: Artech House Co, 2017: 1-79.
[2] BALANIS C A. Antenna theory: Analysis and design[M]. 3rd ed. Hoboken (NJ), USA: Wiley, 2005: 1-5.
[3] SEEDS A J, WILLIAMS K J. Microwave photonics[J]. Journal of Lightwave Technology, 2007, 24(12): 4628- 4641.
[4] YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335. doi: 10.1109/JLT.2008.2009551
[5] JOSÉ C, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330. doi: 10.1038/nphoton.2007.89
[6] HONG W, JIANG Zh H, YU Ch, et al. Multibeam antenna technologies for 5G wireless communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6231-6249. doi: 10.1109/TAP.2017.2712819
[7] YEGNANARAYANAN S, TRINH P D, COPPINGER F, et al. Compact silicon-based integrated optic time delays[J]. IEEE Photonics Technology Letters, 1997, 9(5): 634-635. doi: 10.1109/68.588168
[8] HOWLEY B, WANG X L, CHEN M, et al. Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration[J]. Journal of Lightwave Technology, 2007, 25(3): 883-890. doi: 10.1109/JLT.2006.890459
[9] TSOKOS C, MYLONAS E, GROUMAS P, et al. Optical beamforming network for multi-beam operation with continuous angle selection[J]. IEEE Photonics Technology Letters, 2019, 31(2): 177-180. doi: 10.1109/LPT.2018.2889411
[10] CHENG Q M, ZHENG Sh L, ZHANG Q, et al. An integrated optical beamforming network for two-dimensional phased array radar[J]. Optics Communications, 2021, 489: 126809. doi: 10.1016/j.optcom.2021.126809
[11] LIN D D, SHI Sh Q, CHENG W, et al. A high performance silicon nitride optical delay line with good expansibility[J]. Journal of Lightwave Technology, 2023, 41(1): 209-217. doi: 10.1109/JLT.2022.3213573
[12] MEIJERINK A, ROELOFFZEN C G H, MEIJERINK R, et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part Ⅰ: Design and performance analysis[J]. Journal of Lightwave Technology, 2010, 28(1): 3-18. doi: 10.1109/JLT.2009.2029705
[13] ZHUANG L M, ROELOFFZEN C G H, MEIJERINK A, et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part Ⅱ: Experimental prototype[J]. Journal of Lightwave Technology, 2010, 28(1): 19-31. doi: 10.1109/JLT.2009.2032137
[14] XUE X X, XUAN Y, BAO Ch Y, et al. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control[J]. Journal of Lightwave Technology, 2018, 36(12): 2312-2321. doi: 10.1109/JLT.2018.2803743
[15] WANG G Ch, DAI T G, JIANG J F, et al. Continuously tunable true-time delay lines based on a one-dimensional grating waveguide for beam steering in phased array antennas[J]. Applied Optics, 2018, 57(18): 4998-5003. doi: 10.1364/AO.57.004998
[16] 郑伟, 王超, 杨文丽, 等. 基于色散光学的光波束形成网络[J]. 激光技术, 2022, 46(2): 188-192.ZHENG W, WANG Ch, YANG W L, et al. An optical beamforming network based on dispersing optics[J]. Laser Technology, 2022, 46(2): 188-192(in Chinese).
[17] ZHANG X B, ZHAO M Y, JIAO Y Q, et al. integrated wavelength-tuned optical mm-wave beamformer with doubled delay resolution[J]. Journal of Lightwave Technology, 2020, 38(8): 2353-2359. doi: 10.1109/JLT.2020.2972012
[18] YARON L, ROTMAN R, ZACH S, et al. Photonic beamformer receiver with multiple beam capabilities[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1723-1725. doi: 10.1109/LPT.2010.2083646
[19] ZHAO J, YANG F, DING Z, et al. Configurable photonic true-time delay network and its application in multi-beamforming[J]. Laser Physics Letters, 2019, 16(12): 126203. doi: 10.1088/1612-202X/ab570a
[20] SANTACRUZ J P, ROMMEL S, ROELOFFZEN C G H, et al. Incoherent optical beamformer for AROF fronthaul in mm-wave 5G/6G networks[J]. Journal of Lightwave Technology, 2023, 41(5): 1325-1334. doi: 10.1109/JLT.2022.3221861
[21] SONG Q Q, HU Zh F, CHEN K X. Scalable and reconfigurable true time delay line based on an ultra-low-loss silica waveguide[J]. Applied Optics, 2018, 57(16): 4434- 4439. doi: 10.1364/AO.57.004434
[22] SHAFI M, MOLISCH A F, SMITH P J, et al. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(6): 1201-1221. doi: 10.1109/JSAC.2017.2692307
[23] BENES V E. Mathematical theory of connecting networks and telephone traffic[M]. New York, USA: Academic Press, 1965.
[24] SPANKE R A, BENES V E. N-stage planar optical permutation network[J]. Applied Optics, 1987, 26(7): 1226-1229. doi: 10.1364/AO.26.001226
[25] HINTON H S. A nonblocking optical interconnection network using directional couplers[DB/OL]. (1984-01)[2023-11-23]. https://www.researchgate.net/publication/243674935_A_Nonblocking_Optical_Interconnection_Network_Using_Directional_Couplers.
[26] SULIMAN F M, MOHAMMAD A B, SEMAN K. A new nonblocking photonic switching network[C]// GLOBECOM' 01. IEEE Global Telecommunications Conference. San Antonio, TX, USA: IEEE, 2001, 4: 2071-2076.
[27] SULIMAN F M, MOHAMMAD A B, SEMAN K. A space dilated lightwave network-a new approach[C]// 10th International Conference on Telecommunications, 2003. Papeete, France: IEEE, 2003: 1675-1679.
[28] LU Ch Ch, THOMPSON R A. The double-layer network architecture for photonic switching[J]. Journal of Lightwave Technology, 1994, 12(8): 1482-1489. doi: 10.1109/50.317538
[29] SPANKE R. Architectures for large nonblocking optical space switches[J]. IEEE Journal of Quantum Electronics, 1986, 22(6): 964-967. doi: 10.1109/JQE.1986.1073032
[30] JAJSZCZYK A. A class of directional-coupler-based photonic switching networks[J]. IEEE Transactions on Communications, 1993, 41(4): 599-603. doi: 10.1109/26.223784