[1] SHAH L, FERMANN M. High-power ultrashort-pulse fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 552-558. doi: 10.1109/JSTQE.2007.896096
[2] 王竞, 李建中, 温伟峰, 等. 利用自相关方法实现光脉冲时间延迟精确测量[J]. 中国光学, 2015, 8(2): 270-276.WANG J, LI J Zh, WEN W F, et al. Precisely measuring for optical pulse time delay using autocorrelation[J]. Chinese Optics, 2015, 8(2): 270-276(in Chinese).
[3] 夏照远, 钱静, 王关德, 等. 超短脉冲激光加工金属玻璃研究进展[J]. 激光与光电子学进展, 2021, 58(15): 1516027.XIA Zh Y, QIAN J, WANG G D, et al. Research progress on ultrashort pulsed laser processing of metallic glasses[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516027(in Chinese).
[4] 邹贵生, 林路禅, 肖宇, 等. 超快激光纳米连接及其在微纳器件制造中的应用[J]. 中国激光, 2021, 48(15): 1502001.ZOU G Sh, LIN L Ch, XIAO Y, et al. Ultrafast laser nanojoining and its applicantions in the manufacturing of micro-nano devices[J]. Chinese Journal of Lasers, 2021, 48(15): 1502001(in Chinese).
[5] 刘宇翔, 张瑞康, 王欢, 等. 1.5-μm波段25-GHz重频亚皮秒脉冲输出半导体锁模激光器(特邀)[J]. 光子学报, 2022, 51(2): 0251211.LIU Y X, ZHANG R K, WANG H, et al. 25 GHz semiconductor mode-locked laser with subpicosecond pulse output in the 1.5 μm band(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251211(in Chin-ese).
[6] SALTARELLI F, GRAUMANN I J, LANG L, et al. Power scaling of ultrafast oscillators: 350-W average-power sub-picosecond thin-disk laser[J]. Optics Express, 2019, 27(22): 31465. doi: 10.1364/OE.27.031465
[7] MULLER M, ALESHIRE C, KLENKE A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
[8] WANG W, WU H, LIU C, et al. Multigigawatt 50 fs Yb∶CALGO regenerative amplifier system with 11 W average power and mid-infrared generation[J]. Photonics Research, 2021, 9(8): 1439-1445. doi: 10.1364/PRJ.425149
[9] MENG Y, ZHANG S, JIN C, et al. Enhanced compression of femtosecond pulse in hollow-core photonic bandgap fibers[J]. Optics Communications, 2010, 283(11): 2411-2415. doi: 10.1016/j.optcom.2010.02.016
[10] LI Q, HUANG H. Effective pulse compression in dispersion decreasing and nonlinearity increasing fibers[J]. Optics Communications, 2015, 342: 36-43. doi: 10.1016/j.optcom.2014.11.086
[11] YE F, HUANG J, GANDHI M S A, et al. Nearly self-similar pulse compression of high-repetition-rate pulse trains in tapered silicon waveguides[J]. Journal of Lightwave Technology, 2021, 39(14): 4717-4724. doi: 10.1109/JLT.2021.3077607
[12] YU T, LIU X, PRYAMIKOV A, et al. Femtosecond pulse compression with pedestal suppression in a sagnac interferometer constructed of anti-resonant hollow core fiber[J]. IEEE Photonics Journal, 2021, 13(2): 1-9.
[13] 李沐霖, 张巧芬, 史圣达. 基于啁啾补偿技术的自相似脉冲压缩光纤设计[J]. 激光技术, 2021, 45(5): 566-570.LI M L, ZHANG Q F, SHI Sh D. Design of self-similar pulse compression fiber based on chirp compensation technology[J]. Laser Technology, 2021, 45(5): 566-570(in Chinese).
[14] 赵羽, 刘永智, 赵德双, 等. 光纤激光器锁模技术研究进展[J]. 激光技术, 2009, 33(2): 162-165.ZHAO Y, LIU Y Zh, ZHAO D Sh, et al. Evolution of mode-locked technology of fiber lasers[J]. Laser Technology, 2009, 33(2): 162-165(in Chinese).
[15] WANG F, LI Q. Cascaded single mode fibers for higher-order soliton compression at 2 μm[J]. Applied Optics, 2020, 59(17): E17-E22. doi: 10.1364/AO.385682
[16] 徐永钊, 张耿, 叶海, 等. 级联单模光纤中初始啁啾对高阶孤子脉冲压缩的影响[J]. 发光学报, 2016, 37(11): 1360-1366.XU Y Zh, ZHANG G, YE H, et al. Effect of initial frequency chirp on pulse compression of higher-order solitons in cascaded sing-mode fibers[J]. Chinese Journal of Luminescence, 2016, 37(11): 1360-1366(in Chinese).
[17] 曹文华, 徐平, 刘颂豪, 等. 马赫-曾德尔型色散渐减光纤干涉仪的孤子效应脉冲压缩研究[J]. 光学学报, 2011, 31(4): 0419001.CAO W H, XU P, LIU S H, et al. Soliton-effect pulse compression in a dispersion-decreasing fiber-based Mach-Zehnder interferometer[J]. Acta Optica Sinica, 2011, 31(4): 0419001 (in Chinese).
[18] FERMANN M E, KRUGLOV V I, THOMSEN B C, et al. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Physical Review Letters, 2000, 84(26): 6010-6013.
[19] ZHANG Q F, DENG Y H. Influence of gain coefficient on the self-similar pulses propagation in a dispersion-decreasing fiber[J]. Optik, 2016, 127(12): 5110-5114.
[20] ZHANG Q F. Investigation on generalized analytical solution of similariton chirp in different tapered DDF and NIF[J]. Optical and Quantum Electronics, 2021, 53(1): 54.
[21] 汪徐德, 周正, 李素文, 等. 掺镱光纤放大器中脉冲自相似演化特性分析[J]. 激光技术, 2012, 36(1): 8-12.WANG X D, ZHOU Zh, LI S W, et al. Self-similar pulse evolution in ytterbium doped fiber amplifiers[J]. Laser Technology, 2012, 36(1): 8-12(in Chinese).
[22] DU Y, SHU X. Transformation from conventional dissipative solitons to amplifier similaritons in all-normal dispersion mode-locked fiber lasers[J]. IEEE Photonics Journal, 2018, 10(1): 1-11.
[23] HIROOKA T, NAKAZAWA M. Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion[J]. Optics Letters, 2004, 29(5): 498-500.
[24] DORAN N J, WOOD D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 53-58.
[25] ZHANG Q F, LI H, WU L M, et al. Research on evolution region of self-similar pulses in a dispersion-decreasing fiber[J]. Optical and Quantum Electronics, 2019, 51(6): 190.
[26] CAO W H, WAI P K. Picosecond soliton transmission by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors[J]. Applied Optics, 2005, 44(35): 7611-7620.
[27] 李沐霖, 张巧芬, 史圣达, 等. 基于啁啾补偿的自相似脉冲压缩光栅对的设计[J]. 光通信研究, 2021(4): 56-60.LI M L, ZHANG Q F, SHI Sh D, et al. Design of self-similar pulse compression grating pair based on chirp compensation[J]. Study on Optical Communications, 2021(4): 56-60(in Chinese).