[1] GRABBE G C, BOSENBERG J, DIER H, et al. Intercomparison of ozone measurements between lidar and ECC-sondes[J]. Contributions to Atmospheric Physics, 1996, 69(1): 189-203.
[2] MCDERMID I S, GODIN S M, BARNES R A, et al. Comparison of ozone profiles from ground-based lidar, electrochemical concentration cell balloon sonde, ROCOZ-A rocket ozonesonde, and stratospheric aerosol and gas experiment satellite measurements[J]. Journal of Geophysical Research Atmospheres, 1990, 95(D7): 10037-10042. doi: 10.1029/JD095iD07p10037
[3] FERRARE R A, WHITEMAN D N, MELFI S H, et al. A comparison of water vapor measurements made by Raman lidar and radiosondes[J]. Journal of Atmospheric & Oceanic Technology, 1995, 12(6): 1177-1195.
[4] TANG J. Research on Raman LiDAR for atmospheric temperature and humidity profiles[D]. Xi'an: Xi'an University of Technology, 2012: 9-23(in Chinese).
[5] WANG Sh L, SU J, ZHAO P T, et al. A pure rotational Raman-lidar based on three-stage Fabry-Perot etalons for monitoring atmospheric temperature[J]. Acta Physica Sinica, 2008, 57(6): 3941-3947(in Chinese). doi: 10.7498/aps.57.3941
[6] SHANG Zh. Pure rotational Raman lidar for the measurement of atmospheric temperature in the bottom of the troposphere[D]. Beijing: University of Science and Technology of China, 2017: 13-30(in Chin-ese).
[7] SHERLOCK V, GARNIER A, HAUCHECORNE A, et al. Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor[J]. Applied Optics, 1999, 38(27): 5838-5850. doi: 10.1364/AO.38.005838
[8] XIA J R, WANG P C, MIN M. Observation and validation of wind parameters measured by Doppler wind lidar windcube[J]. Climatic and Environmental Research, 2011, 16(6): 733-741(in Chinese).
[9] STEINHAGEN H, BAKAN S, BOSENBERG J, et al. Field campaign LINEX 96/1-possibilities of water vapor observation in the free atmosphere[J]. Meteorologische Zeitschrift, 1998, 7(6): 377-391. doi: 10.1127/metz/7/1998/377
[10] CHEN Y B, GAO Y C, LIU B Y, et al. The Assessment and analysis of the upper wind data measured the doppler lidar based on the chebyshev function[J]. Journal of Tropical Meteorology, 2014, 32(2): 465-486.
[11] LI S T, MA S Q, GAO Y C, et al. Comparative analysis of cloud base heights observed by cloud radar and ceilometers[J]. Meteorological Monthly, 2015, 41(2): 212-218.
[12] LI Ch C, LIU Q H, M J T, et al. An aersol pollution episode in Hong Kong with remote sensing products of MODIS and LiDAR[J]. Journal of Applied Meteorological Science, 2004, 15(6): 641-650(in Chinese).
[13] ZHU J K, LI L J, LIN X Z. Research on measurement field planning of lidar measurement system[J]. Laser Technology, 2021, 45(1): 99-104(in Chinese).
[14] MCDERMID I S, GODIN S M, Walsh D T. LiDAR measurements of stratospheric ozone and intercomparisons and validation[J]. Applied Optics, 1990, 29(33): 4914-4923. doi: 10.1364/AO.29.004914
[15] BOSENBERG J, ANSMANN A, BALDASANO J M, et al. EARLINET: A European aerosol research lidar network in laser remote sensing of the atmosphere[C]//Selected Papers of the 20th International Laser Radar Conference. Palaiseau, France: Edition Ecole Polytechnique, 2001: 155-158.
[16] MATTHAIS V, FREUDENTHALER V, AMODEO A, et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments[J]. Applied Optics, 2004, 43(4): 961-976. doi: 10.1364/AO.43.000961
[17] BOCKMANN C, WANDINGER U, ANSMANN A, et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms[J]. Applied Optics, 2004, 43(4): 977-989. doi: 10.1364/AO.43.000977
[18] WANDINGER U, FREUDENTHALER V, BARRS H, et al. EARLINET instrument intercomparison campaigns: Overview on strategy and results[J]. Atmospheric Measurement Techniques, 2016, 9(3): 1001-1023. doi: 10.5194/amt-9-1001-2016
[19] DAMICO G, AMEODEO A, BARRS H, et al. EARLINET single calculus chain-overview on methodology and strategy[J]. Atmospheric Measurement Techniques, 2015, 8(11): 4891-4916. doi: 10.5194/amt-8-4891-2015
[20] PAPPALARDO G, AMODEO A, APITULEY A, et al. EARLINET: Towards an advanced sustainable European aerosol lidar network[J]. Atmospheric Measurement Techniques, 2014, 7(8): 2389-2409. doi: 10.5194/amt-7-2389-2014
[21] ZHOU B, ZHANG L, JIANG D M, et al. Analysis of aerosol optical depth over Lanzhou based on lidar measurement[J]. Journal of Arid Meteorology, 2013, 31(4): 666-671.
[22] CHEN B L, ZHANG Y C, CHEN S Y, et al. Fitting aerosol optical depth and PM2.5 in atmospheric boundary layer by using rotational Roman-mie lidar[J]. Transaction of Beijing Institute of Technology, 2016, 36(8): 857-861.
[23] LI L H, LIU W Q, ZHANG T Sh, et al. A new micro-pulse lidar for atmospheric horizontal visibility measurement[J]. Chinese Journal of Lasers, 2014, 41(9): 0908005(in Chinese). doi: 10.3788/CJL201441.0908005
[24] GUO W, BU L B, JIA X H, et al. Analyses on sand-dust aerosol properties with ceilometer in Beijing[J]. Meteorology Monthly, 2016, 42(12): 1540-1546.
[25] BU L B, YUAN J, GAO A Z, et al. Analysis of haze-fog events based on laser celiometer[J]. Acta Photonica Sinica, 2014, 43(9): 64-69(in Chinese).