[1] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生. 物理学报, 2011, 60(3): 397-403.YAN Ch Y, ZHANG Q J, LUO M H. Generation ofattosecond X-ray pulse in the interaction between the pulses and the relativistic electrons. Acta Physica Sinica, 2011, 60(3): 397-403(in Ch-inese).
[2] 卢孟春, 刘国跃. Petawatt激光与应用. 四川师范大学学报(自然科学版), 2002, 25(1): 81-83.LU M Ch, LIU G Y. Petawatt laser and its application. Journal of Sichuan Normal University (Natural Science Edition), 2002, 25(1): 81-83(in Chinese).
[3] 肖耀宗, 王子豪, 郅佳琳, 等. 通过控制激光脉冲振幅以获得准直高能电子束. 山东工业技术, 2018(13): 122.XIAO Y Z, WANG Z H, ZHI J L, et al. Collimated high-energy electron beam obtained by controlling the amplitude of the laser pulse. Shandong Industrial Technology, 2018(13): 122(in Chinese).
[4] 田友伟, 余玮, 陆培祥, 等. 紧聚焦的超短超强激光脉冲在真空中加速斜入射的相对论电子. 物理学报, 2005, 54(9): 4208-4212. doi: 10.3321/j.issn:1000-3290.2005.09.045TIAN Y W, YU W, LU P X, et al. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4208-4212(in Ch-inese). doi: 10.3321/j.issn:1000-3290.2005.09.045
[5] WANG Y Q, ZHOU Q Y, ZHUANG J W, et al. Vortex and symmetric radiation character of nonlinear Thomson scattering in Laguerre-Gaussian circularly polarized laser pulses. Optics Express, 2021, 29(14): 22636-22647. doi: 10.1364/OE.426529
[6] WANG Y Q, WANG C L, LI K, et al. Analysis of spatial radiation and motion features of nonlinear Thomson scattering in circularly polarized laser pulses. Optical and Quantum Electronics, 2021, 53(5): 229. doi: 10.1007/s11082-021-02870-7
[7] WANG Y Q, WANG C L, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laserbeams. Laser Physics Letters, 2021, 18(1): 015303. doi: 10.1088/1612-202X/abd170
[8] WANG Y Q, WANG C L, ZHOU Q Y, et al. Nonlinear Thomson scattering from a tightly focused circularly polarized laser with varied incident-pulse durations. Laser Physics, 2021, 31(1): 015301. doi: 10.1088/1555-6611/abd3f7
[9] YU P H, LIN H N, GU Z Y, et al. Analysis of the beam waist on spatial emission characteristics from an electron driven by intense linearly polarized laser pulses. Laser Physics, 2020, 30(4): 045301. doi: 10.1088/1555-6611/ab74d4
[10] CHEN Z J, QIN H, CHEN X, et al. Spatial radiation features of circularly polarized tightly focused laser beams colliding withelectrons. Laser Physics, 2021, 31(7): 075401. doi: 10.1088/1555-6611/ac0046
[11] GLENSER S, REDMER R. X-ray Thomson scattering in high energy densityplasmas. Review of Modern Physics, 2009, 81(4): 1625-1663. doi: 10.1103/RevModPhys.81.1625
[12] BOCA M, OPREA A. Thomson scattering in the high intensity regime. Physica Scripta, 2011, 83(5): 055404. doi: 10.1088/0031-8949/83/05/055404
[13] BROWN W J, HARTEMANN F V. Three-dimensional time and frequency-domain theory of femtosecond X-ray pulse generation through Thomson scattering. Physical Review Special Topics-Accelerators and Beams, 2004, 7(6): 060703. doi: 10.1103/PhysRevSTAB.7.060703
[14] SCHOELIEN R W, LEEMANS W, CHIN A, VOLFBEYN P, et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thompson scattering: A tool for probing the structural dynamics of materials. Science, 1996, 274(5285): 236-238. doi: 10.1126/science.274.5285.236
[15] WALLER I, HARTREE D R. On the intensity of totalscattering of X-rays. Proceedings of the Royal Society, 1929, A124(793): 119-142.
[16] LI K, LI L X, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laserpulses. Optik, 2019, 183(12): 813-817.
[17] ZHUANG J W, WANG Y Q, WANG C L, et al. Spectral shape of quasi-monochromatic radiation from electron colliding with tightly focused laserpulses. Laser Physics, 2021, 31(6): 0065403. doi: 10.1088/1555-6611/abfa89
[18] ZHUANG J W, YAN Y L, ZHOU X, et al. Quasi-monochromatic spectral emission characteristics from electron collision with tightly focused laser pulses. Laser Physics, 2021, 31(3): 035401.
[19] 严以律, 周希, 任山令, 等. 电子初始位置对高能电子空间辐射的影响. 激光技术, 2022, 46(4): 556-560.YAN Y L, ZHOU X, REN Sh L, et al. Influence of electron's initial position on spatial radiation of high-energyelectrons. Laser Technology, 2022, 46(4): 556-560(in Chinese).
[20] 郑君, 盛政明, 张杰, 等. 影响单电子非线性汤姆孙散射因素的研究. 物理学报, 2005, 54(3): 1018-1035.ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors affecting the single electron nonlinear Thomsom scattering. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese).