[1] KE X Zh, XI X L. Introduction to wireless laser communication[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2004: 1-27(in Chinese).
[2] LI X F. The Principle and technology of the satellite-to-ground laser communication links[M]. Beijing: National Defense Industry Press, 2007: 6-46(in Chinese).
[3] CHEN Y F. Experimental research on air-water wireless optical communication[D]. Hangzhou: Zhejiang University, 2018: 1-3(in Ch-inese).
[4] CHI N, HU F Ch, ZHOU Y J. The challenges and prospects of high-speed visible light communication technology[J]. ZTE Technology Journal, 2019, 25(5): 56-61(in Chinese).
[5] STOJANOVIC M. Recent advances in high-speed underwater acoustic communication[J]. IEEE Journal of Oceanic Engineering, 1996, 21(2): 125-136. doi: 10.1109/48.486787
[6] CHE X H, WELLS I, DICKERS G, et al. Re-evaluation of RF electromagnetic communication in underwater sensor networks[J]. IEEE Communications Magazine, 2011, 48(12): 143-151.
[7] CHOWDHURY M Z, HOSSAN M T, ISLAM A, et al. A comparative survey of optical wireless technologies: Architectures and applications[J]. IEEE Access, 2018, 6: 9819-9840. doi: 10.1109/ACCESS.2018.2792419
[8] XU X M. Development and applications of underwater acoustic communication and networks[J]. Technical Acoustics, 2009, 28(6): 811-816(in Chinese).
[9] LIU Z H, WU X F, XU J P, et al. Fifteen years of ocean observations with China Argo[J]. Advances in Earth Science, 2016, 31(5): 445-460(in Chinese).
[10] DUNTLEY S Q. Light in the Sea*[J]. Journal of the Optical Socie-ty of America, 1963, 53(2): 214-233. doi: 10.1364/JOSA.53.000214
[11] JACOBSON T. Phys104-how things work[EB/OL]. (2008-11-18)[2021-01-29]. http://www.physics.umd.edu/grt/taj/104a/104anotessupps.html.
[12] WANG J M, LU Ch H, LI S B, et al. 100m/500Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optic Express, 2019, 27(9): 12171-12181. doi: 10.1364/OE.27.012171
[13] WIENER T F, KARP S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communications, 1980, 28(9): 1602-1607. doi: 10.1109/TCOM.1980.1094858
[14] TAN X Y. Role and future of laser technique for U-boat communication[J]. Laser Technology, 1993, 17(4): 232-238(in Chinese).
[15] CHARLES C W. A 1Mbps underwater communication system using a 405nm laser diode and photomultiplier[D]. Raleigh, North Carolina, USA: North Carolina State University, 2007: 68-73.
[16] RADICS H. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277-283. doi: 10.1364/AO.47.000277
[17] NAKAMURA K, MIZUKOSHI I, HANAWA M. Optical wireless transmission of 405nm, 1.45Gbit/s optical IM/DD-OFDM signals through a 4.8m underwater channel[J]. Optics Express, 2015, 23(2): 1558-1566. doi: 10.1364/OE.23.001558
[18] OUBEI H M, LI C P, PARK K H, et al. 2.3Gbit/s underwater wireless optical communications using directly modulated 520nm laser diode[J]. Optics Express, 2015, 16(23), 20743-20748.
[19] SAWA T. Study of adaptive underwater optical wireless communication with photomultiplier tube[R]. Suruga bay, Japan: Japan Agency for Marine-Earth Science and Technology, 2017: 1-15.
[20] HUANG X Sh, WANG R L, XU R Sh, et al. Underwater laser communication transmitting and receiving system[J]. Journal of Ocean University of Qingdao, 1998, 28(4): 140-145(in Chinese).
[21] HE N, LI H L, ZHANG D K, et al. The multiple diversity reception of signal under water in laser communication[J]. Laser & Infrared, 2002, 32(4): 228-229(in Chinese).
[22] CHEN Y F, KONG M W, ALI T, et al. 26m/5.5Gbit/s air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode[J]. Optics Express, 2017, 25(13): 14760-14765. doi: 10.1364/OE.25.014760
[23] HAN S Q, WANG Zh, CHEN H, et al. Image-based geometric shaping 16QAM DMT coded visible light communication[J]. China Light & Lighting, 2020(6): 16-21(in Chinese).
[24] CHEN M, ZOU P, ZHANG L, et al. Demonstration of a 2.34Gbit/s real-time single silicon-substrate blue LED based underwater VLC system[J]. IEEE Photonics Journal, 2020, 12(1): 7900211.
[25] KAUSHAL H, KADDOUM G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518-1547. doi: 10.1109/ACCESS.2016.2552538
[26] MOBLEY C D. Light and water: Radiative transfer in natural waters[M]. New York, USA: Academic Press, 1994: 1-5.
[27] JOHNSON L J, JASMAN F, GREEN R J, et al. Recent advances in underwater optical wireless communications[J]. Underwater Technology, 2014, 32(3): 167-175. doi: 10.3723/ut.32.167
[28] SPINRAD R W, CARDER K L, PERRY M J. Ocean optics[M]. Oxford, UK: Clarendon Press, 1994: 1-10.
[29] WU Q, WANG B, WANG T, et al. Monte Carlo method-based analysis of underwater wireless optical transmission characteristics[J]. Acta Photonica Sinica, 2021, 50(4): 0406002(in Chinese).
[30] GUSSEN C M G, DINIZ P S R, CAMPOS M L R, et al. A survey of underwater wireless communication technologies[J]. Journal of Communication and Information System, 2016, 31(1): 242-255. doi: 10.14209/jcis.2016.22
[31] MOBLEY C D, GENTILI B, GORDON H R, et al. Comparison of numerical models for computing underwater light fields[J]. Applied Optics, 1993, 32(36): 7484-7504. doi: 10.1364/AO.32.007484
[32] WANG W, WANG P, CAO T, et al. Performance investigation of underwater wireless optical communication system using M-ary OAMSK modulation over oceanic turbulence[J]. IEEE Photonics Journal, 2017, 9(5): 1-15.
[33] HE G, LV Zh J, QIU Ch F, et al. Performance evaluation of 520nm laser diode underwater wireless optical communication systems in the presence of oceanic turbulence[J]. SID Symposium Digest of Technical Papers, 2020, 51(s1): 47-50. doi: 10.1002/sdtp.13748
[34] FU Y Q, HUANG Ch T, DU Y Zh. Effect of aperture averaging on mean bit error rate for UWOC system over moderate to strong oceanic turbulence[J]. Optics Communications, 2019, 451: 6-12. doi: 10.1016/j.optcom.2019.06.030
[35] WU J. Study and implementation of underwater wireless optical communication system[D]. Xiamen: Xiamen University, 2014: 31-38 (in Chinese).
[36] KONG M W. Design and experiment study of underwater wireless optical communication system[D]. Hangzhou: Zhejiang University, 2018: 6-8(in Chinese).
[37] CHI N. LED visible light communication technologies[M]. Beijing: Tsinghua University Press, 2013: 70-75 (in Chinese).
[38] DONIEC M, VASILESCU I, CHITRE M, et al. AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication[C]//Proceedings of OCEANS 2009. New York, USA: IEEE, 2009: 1-6.
[39] ARVANITAKIS G N, BIAN R, MCKENDRY J J D, et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays[J]. IEEE Photonics Journal, 2020, 12(2): 1-10.
[40] HEATHER B. Designing a wireless underwater optical communication system[D]. Boston, USA: Massachusetts Insttute of Technology, 2010: 1-8.
[41] CHEN X, LYU W Ch, ZHANG Z J, et al. 56m/3.31Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction[J]. Optics Express, 2020, 28(16): 23784-23795. doi: 10.1364/OE.399794
[42] XU J, KONG M W, LIN A B, et al. OFDM-based broadband underwater wireless optical communication system using a compact blue LED[J]. Optics Communications, 2016, 369(6): 100-105.
[43] TIAN P F, LIU X Y, YI S Y, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193-1201. doi: 10.1364/OE.25.001193
[44] ZHUANG B Y, LI C, WU N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10 meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//2017 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2017: 17311399.
[45] WANG F M, LIU Y F, JIANG F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 2018, 425: 106-112. doi: 10.1016/j.optcom.2018.04.073
[46] CHI N, ZHAO Y H, SHI M, et al, Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system[J]. Optics Express, 2018, 26(20): 26700-26712. doi: 10.1364/OE.26.026700
[47] LU I C, LIU Y C. 205Mb/s LED-based underwater optical communication employing OFDM modulation[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). New York, USA: IEEE, 2018: 18323039.
[48] HAN B, ZHAO W, ZHENG Y, et al. Experimental demonstration of quasi-omni-directional transmitter for underwater wireless optical communication based on blue LED array and freeform lens[J]. Optics Communication, 2019, 434: 184-190. doi: 10.1016/j.optcom.2018.10.037
[49] WANG F M, LIU Y F, SHI M, et al. 3.075Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 2019, 58(5): 1-9.
[50] ZHAO Y H, ZOU P, CHI N. 3.2Gbps underwater visible light communication system utilizing dual-branch multi-layer perceptron based post-equalizer[J]. Optics Communications, 2020, 460: 125197-125208. doi: 10.1016/j.optcom.2019.125197
[51] XU J, SONG Y H, YU X Y, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. Optics Express, 2016, 24(8): 8097-8109. doi: 10.1364/OE.24.008097
[52] LI Ch Y, LU H H, TSAI W Sh, et al. A 5m/25Gbit/s underwater wireless optical communication system[J]. IEEE Photon Journal, 2018, 10(3): 1-9.
[53] FEI C, HONG X J, ZHANG G W, et al. 16.6Gbit/s data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060-34069. doi: 10.1364/OE.26.034060
[54] FEI C, ZHANG J W, ZHANG G W, et al. Demonstration of 15m 7.33Gb/s 450nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 2018, 36(3): 728-734. doi: 10.1109/JLT.2017.2780841
[55] HONG X J, FEI C, ZHANG G W, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shapin 5.5g to approach channel capacity limit[J]. Optics Letters, 2019, 44(3): 558-561. doi: 10.1364/OL.44.000558
[56] LU Ch H, WANG J M, LI Sh B, et al. 60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//2019 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2019: 1-2.
[57] CHEN H L, CHEN X W, LU J, et al. Toward long-distance underwater wireless optical communication based on a high sensitivity single photon avalanche diode[J]. IEEE Photonics Journal, 2020, 12(3): 1-10.
[58] HO Ch M, LU Ch K, LU H H, et al. A 10m/10Gbps Underwater Wireless Laser Transmission System[C]// 2017 Optical Fiber Communications Conference & Exhibition. New York, USA: IEEE, 2017: 1-3.
[59] LU H H, LI CH Y, LIN H H, et al. An 8m/9.6Gbit/s underwater wireless optical communication system[J]. IEEE Photonics Journal, 2016, 8(5): 1-7.
[60] HONG W X, YU Zh, WEI W, et al. Evolution of the short-range visible light communications & IEEE802.15.7[J]. Optical Communication Technology, 2013, 37(7): 4-7(in Chinese).
[61] CHI Y Ch, HSIEH D H, TSAI Ch T, et al. 450nm GaN laser diode enables high-speed visible light communication with 9-Gbp QAM-OFDM[J]. Optics Express, 2015, 23(10): 13051-13059. doi: 10.1364/OE.23.013051
[62] OUBEI H M, DURÁN J R, JANJUA B, et al. Wireless optical transmission of 450nm, 3.2Gbit/s 16-QAM-OFDM signals over 6.6m underwater channel[C]//2016 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2016: 1-2.
[63] WU T Ch, CHI Y Ch, WANG H Y, et al. Blue laser diode enables underwater communication at 12.4Gbit/s[J]. Scientific Reports, 2017, 7(1): 40480. doi: 10.1038/srep40480
[64] HUANG Y F, TSAI C T, CHI Y Ch, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8Gbps seawater transmission[J]. Journal of Lightwave Technology, 2018, 36(9): 1739-1745. doi: 10.1109/JLT.2017.2782840
[65] ZHANG L, WANG H, SHAO X. Improved m-QAM-OFDM transmission for underwater wireless optical communications[J]. Optics Communications, 2018, 423: 180-185. doi: 10.1016/j.optcom.2018.04.026
[66] WANG J L, YANG X Q, LV W Ch, et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 2019, 451: 181-185. doi: 10.1016/j.optcom.2019.06.053
[67] GUO Y R, WANG X Q, FU M Sh. QAM-OFDM transmission in underwater wireless optical communication system with limited resolution DAC[J]. Optical and Quantum Electronics, 2020, 52(9): 419-426. doi: 10.1007/s11082-020-02529-9
[68] COX W C, SIMPSON J A, DOMIZIOLI C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Oceans 2008. New York, USA: IEEE, 2008: 5151992.
[69] WANG W P, ZHENG B. The simulation design of led-based close-range underwater optical communication system[C]//2013 10th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). New York, USA: IEEE, 2013: 283-285.
[70] DONIEC M, ANGERMANN M, RUS D. An end-to-end signal strength model for underwater optical communications[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 743-757. doi: 10.1109/JOE.2013.2278932
[71] CHEN S, SONG J L, YUAN Z M, et al. Diver communication system based on underwater optical communication[J]. Applied Mechanics and Materials, 2014, 621: 259-263. doi: 10.4028/www.scientific.net/AMM.621.259
[72] PEPPAS K P, BOUCOUVALAS A C, GHASSEMLOY Z, et al. Semiconductor optical amplifiers for underwater optical wireless communications[J]. IET Optoelectronics, 2017, 11(1): 15-19. doi: 10.1049/iet-opt.2016.0010
[73] EVERETT J. Forward-error correction coding for underwater free-space optical communication[D]. North Carolina, USA: North Carolina State University, 2009: 1-5.
[74] LIU H, YANG Y, YIN Y F, et al. Alignment control algorithm of underwater LD communication based on EKF[J]. Acta Photonica Sinica, 2020, 49(4): 137-145(in Chinese).
[75] HE F T, LI S J, YANG Y, et al. Receiver alignment system based on underwater spot tracking[J]. Acta Photonica Sinica, 2020, 49(10): 1001002(in Chinese). doi: 10.3788/gzxb20204910.1001002
[76] LIU L L. Research on channel estimation technologies in optical OFDM transmissions[D]. Shanghai: Shanghai Jiao Tong University, 2013: 13-18(in Chinese).
[77] HU S Q, MI L, ZHOU T H, et al. Viterbi equalization for long-distance, high-speed underwater laser communication[J]. Optical Engineering, 2017, 56(7): 076101. doi: 10.1117/1.OE.56.7.076101
[78] HU S Q, ZHOU T H, CHEN W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003 (in Chinese). doi: 10.3788/CJL201643.1206003
[79] HU X H, HU S Q, ZHOU T H, et al. Rapid estimation of the maximum communication distance for an underwater laser communication system[J]. Chinese Journal of Lasers, 2015, 42(8): 0805007. doi: 10.3788/CJL201542.0805007
[80] LI Y Ch, SAFARI M, HENDERSON R, et al. Optical OFDM with single-photon avalanche diode[J]. IEEE Photonics Technology Le-tters, 2015, 27(9): 943-946. doi: 10.1109/LPT.2015.2402151
[81] GABRIEL C, KHALIGHI M A, BOURENNANE S, et al. Monte-Carlo-based channel characterization for underwater optical communication Systems[J]. Journal of Optical Communications & Network-ing, 2013, 5(1): 1-12.