[1] TANG K Ch, YOU P, YAN F. Highly stable all-inorganic perovskite solar cells processed at low temperature[J]. Solar RRL, 2018, 2(8): 1800075. doi: 10.1002/solr.201800075
[2] YANG L L, WANG T, MIN Q H, et al. High water resistance of monoclinic CsPbBr3 nanocry-stals derived from zero-dimensional cesium lead halide perovskites[J]. ACS Omega, 2019, 4(3): 6084-6091. doi: 10.1021/acsomega.9b00370
[3] PAN A Zh, MA X Q, HUANG Sh Y, et al. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6590-6597. doi: 10.1021/acs.jpclett.9b02605
[4] GUPTA S, KULBAK M, CAHEN D. Pin-hole-free, homogeneous, pure CsPbBr3 films onflat substrates by simple spin-coating modification[J]. Frontiers in Energy Research, 2020, 8: 100. doi: 10.3389/fenrg.2020.00100
[5] WANG Sh B, CAO F X, SUN W H, et al. A green bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic pe-rovskite solar cells[J]. Materials Tod-ay Physics, 2022, 22: 100614. doi: 10.1016/j.mtphys.2022.100614
[6] JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8): 682-689. doi: 10.1038/s41560-018-0200-6
[7] TURREN-CRUZ S H, HAGFELDT A, SALIBA M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413): 449-453. doi: 10.1126/science.aat3583
[8] KIM B W, HEO J H, PARK J K, et al. Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes[J]. Journal of Industrial and Engineering Chemistry, 2021, 97: 417-425. doi: 10.1016/j.jiec.2021.02.028
[9] LIU J M, ZHU L Q, XIANG S S, et al. Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: A promising light absorber in carbon-based perovskite sol-ar cells[J]. Sustainable E-nergy Fuels, 2019, 3: 184-194. doi: 10.1039/C8SE00442K
[10] LI H H, CUI Ch C, XU X P, et al. A review of characterization of perovskite film in solar cells by spectroscopic ellipsometry[J]. Solar Energy, 2020, 212: 48-61. doi: 10.1016/j.solener.2020.10.066
[11] ZHAO M L, SHI Y J, DAI J, et al. Ellipsometric study of the complex optical constants of a CsPbBr3 perovskite thin film[J]. Journal of Materials Chemistry, 2018, C6(39): 10450-10455.
[12] YAN W Sh, MAO L Y, ZHAO P Y, et al. Determination of complex optical constantsand photovoltaic device design of allinorganic CsPbBr3 perovskite thin films[J]. Optics Express, 2020, 28(10): 15706-15717. doi: 10.1364/OE.392246
[13] CHEN Ch, WU D, YUAN M, et al. Spectroscopic ellipsometry study of CsPbBr3 perovskite thin films prepared by vacuum evaporation[J]. Journal of Physics, 2021, D54(22): 224002.
[14] DUAN J L, ZHAO Y Y, HE B L, et al. High-purity inorganic perovskite films for solar cells with 9.72% efficiency[J]. Angewandte Chemie, 2018, 57(14): 3787-3791. doi: 10.1002/anie.201800019
[15] GAO B W, MENG J. High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method[J]. Solar Energy, 2020, 211: 1223-1229. doi: 10.1016/j.solener.2020.10.045
[16] 胡星星. Cu50Zr50非晶合金薄膜微观结构及光电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 14-15.HU X X. The microstructure and optical & electrical properties of the Cu50Zr50 thin film metallic glasses[D]. Harbin: Harbin Institute of Technology, 2018: 14-15(in Chinese).
[17] 孙晓娟, 韩培高, 隽方蓥, 等. 基于原位共角椭偏与反射谱的TiO2薄膜光学常数分析[J]. 激光技术, 2022, 46(2): 288-292.SUN X J, HAN P G, JUAN F Y, et al. Analysis of optical constants of TiO2 thin film based on in-situ common angle ellipsometry and reflection[J]. Laser Technology, 2022, 46(2): 288-292(in Chin-ese).
[18] EL HAIMEUR A, MAKHA M, BAKKALI H, et al. Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer[J]. Solar Energy, 2020, 195: 475-482. doi: 10.1016/j.solener.2019.11.094
[19] OCHOA-MARTINEZ E, NAVARRETE-ASTORGA E, RAMOS-BARRADO J, et al. Evolution of Al ∶ZnO optical response as a function of doping level[J]. Applied Surface Science, 2017, 421: 680-686. doi: 10.1016/j.apsusc.2016.10.103
[20] POSTAVA K, GAO Y Z, GONG X Y, et al. Spectroscopic ellipsometry of anodized layer on single crystal InAsSb layer grown by melt epitaxy[J]. Physica Status Solidic, 2008, 5(5): 1316-1319. doi: 10.1002/pssc.200777757
[21] HEIDRICH K, KUNZEL H, TREUSCH J. Optical properties and electronic structure of CsPbCl3 and CsPbBr3[J]. Solid State Communications, 1978, 25(11): 887-889. doi: 10.1016/0038-1098(78)90294-6
[22] KONDO S, TANAKA H, SAITO T. Optical absorption and localized electronic states in amorphous CsPbX3, PbX2 and TlX (X=Cl, Br)[J]. Journal of Physics: Condensed Matter, 1999, 11: 41.
[23] YAN J H, HOU Sh Ch, LI X Y, et al. Preparation of highly efficient and stable CsPbBr3 perovskite solar cells based on an anti-solvent rinsing strategy[J]. Solar Energy Materials and Solar Cells, 2022, 234: 111420. doi: 10.1016/j.solmat.2021.111420
[24] KUMAR Y, SINGH V, PANDEY A, et al. Synthesis, characterization and antibacterial activity of ZnO nanoparticles[J]. AIP Confe-rence Proceedings, 2020, 2265(1): 030119.
[25] ZHANG J W, HE G, LI T S, et al. Modulation of microstructure and optical properties of Mo-doped ZnO thin films by substrate temperature[J]. Materials Research Bulletin, 2015, 65: 7-13. doi: 10.1016/j.materresbull.2015.01.004