[1] 景新军, 蔡大牛, 李斌, 等. 印染废水深度处理技术进展[J]. 水处理技术, 2022, 48(6): 13-19. doi: 10.16796/j.cnki.1000-3770.2022.06.003JING X J, CAI D N, LI B, et al. Progress in the deep treatment technology of printing and dyeing wastewater[J]. Technology of Water Treatment, 2022, 48(6): 13-19(in Chinese). doi: 10.16796/j.cnki.1000-3770.2022.06.003
[2] ARSLAN A I, BALCIOGLU I A. Degradation of remazol black B dye and its simulated dyebath wastewater by advanced oxidation processes in heterogeneous and homogeneous media[J]. Review of Progress in Coloration and Related Topics, 2006, 117(1): 38-42.
[3] CHU W. Dye removal from textile dye wastewater using recycled alum sludge[J]. Water Research, 2001, 35(13): 3147-3152. doi: 10.1016/S0043-1354(01)00015-X
[4] MALIK P K. Dye removal from wastewater using activated carbon developed from sawdust: Adsorption equilibrium and kinetics[J]. Journal of Hazardous Materials, 2004, 113(1/3): 81-88.
[5] AN H, YI Q, GU X, et al. Biological treatment of dye wastewaters using an anaerobiceoxic system[J]. Chemosphere, 1997, 33(12): 2533-2542.
[6] BEHNAJADY M A, MODIRSHAHLA N, TABRIZI S B, et al. Ultrasonic degradation of rhodamine B in aqueous solution: Influence of operational parameters[J]. Journal of Hazardous Materials, 2008, 152(1): 381-386. doi: 10.1016/j.jhazmat.2007.07.019
[7] HENGLEIN A. Sonochemistry: Historical developments and modern aspects[J]. Ultrasonics, 1987, 25(1): 6-16. doi: 10.1016/0041-624X(87)90003-5
[8] CRUM L A. Comments on the evolving field of sonochemistry by a cavitation physicist[J]. Ultrasonics Sonochemistry, 1995, 2(2): S147-S152. doi: 10.1016/1350-4177(95)00018-2
[9] WANG X, WANG J, GUO P. Chemical effect of swirling jet-induced cavitation: degradation of rhodamine B in aqueous solution[J]. Ultrasonics Sonochemistry, 2008, 15(4): 357-363. doi: 10.1016/j.ultsonch.2007.09.008
[10] GOGATE P R, SHIRGAONKAR I Z, SIVAKUMAR M, et al. Cavitation reactors: Efficiency assessment using a model reaction[J]. Aiche Journal, 2010, 47(11): 2526-2538.
[11] VICHARE N P, GOGATE P R, PANDIT A B. Optimization of hydrodynamic cavitation using a model reaction[J]. Chemical Engineering & Technology, 2000, 23(8): 683-690.
[12] 沈银华, 邓松圣, 张攀锋. 空化射流降解机理研究[J]. 贵州化工, 2007(1): 25-27.SHEN Y H, DENG S Sh, ZHANG P F. Pilot study of cavitations water jet degradation principle[J]. GuiZhou Chemical Industry, 2007(1): 25-27(in Chinese).
[13] 史雅慧. 超声空化降解水中头孢克圬的研究[J]. 化工设计通讯, 2019, 45(10): 157-158.SHI Y H. Ultrasonic cavitation degradation of cefixime in water[J]. Chemical Engineering Design Communications, 2019, 45(10): 157-158(in Chinese).
[14] 罗锦锋, 宋世军, 王平秋, 等. 激光等离子体对硅表面微纳粒子除去机理研究[J]. 激光技术, 2018, 42(4): 567-571.LUO J F, SONG Sh J, WANG P Q, et al. Study on removal mechanism of micro-/nano-particles on silicon surface by laser plasma[J]. Laser Technology, 2018, 42(4): 567-571(in Chinese).
[15] 孙晨薇, 步扬, 王远航, 等. 激光诱导等离子体光谱空间分布特性[J]. 光学学报, 2021, 41(21): 2130001.SUN Ch W, BU Y, WANG Y H, et al. Spatial characteristics of spectral intensity of laser induced plasma[J]. Acta Optica Sinica, 2021, 41(21): 2130001(in Chinese).
[16] ZHAO R, XU R Q, SHEN Z H. Experimental investigation of the collapse of laser-generated cavitation bubbles near a solid boundary[J]. Optics & Laser Technology, 2007, 39(5): 968-972.
[17] 李胜勇, 吴荣华, 王晓宇, 等. 环境压强对空泡脉动特性的影响[J]. 光子学报, 2016, 45(3): 0314002.LI Sh Y, WU R H, WANG X Y, et al. Effect of ambient pressure on bubble oscillation[J]. Acta Photonica Sinica, 2016, 45(3): 0314002 (in Chinese).
[18] REN X D, HE H, TONG Y Q. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles[J]. Ultrasonics-Sonochemistry, 2016, 32: 218-223.
[19] 毛卫平, 丁伟, 张朝阳, 等. 激光电化学复合加工的冲击空化检测及试验[J]. 激光技术, 2014, 38(6): 753-758.MAO W P, DING W, ZHANG Zh Y, et al. Detection and experiment of shock cavitations of laser electrochemical composite processing[J]. Laser Technology, 2014, 38(6): 753-758(in Chinese).
[20] 姜雨佳, 张朝阳, 黄磊, 等. 激光热力强化电化学沉积试验研究[J]. 激光技术, 2016, 40(5): 660-664.JIANG Y J, ZHANG Zh Y, HUANG L, et al. Experiment study of laser thermal-mechanical enhanced electrochemical deposition[J]. Laser Technology, 2016, 40(5): 660-664(in Chinese).
[21] 叶浩, 张骏昕, 梅海平, 等. 基于激光烧蚀吸收光谱的合金钢中铝元素的定量分析[J]. 中国激光, 2020, 47(10): 1011004.YE H, ZHANG J X, MEI H P, et al. Quantitative analysis of aluminum in alloy steel by laser ablation absorption spectroscopy[J]. Chinese Journal of Lasers, 2020, 47(10): 1011004(in Chinese).
[22] 黄华. 化工园区工业废水深度处理高级氧化工艺选择[J]. 广州化工, 2020, 48(10): 142-144.HUANG H. Advanced oxidation process selection for advanced treatment of industrial wastewater in chemical industry park[J]. Guangzhou Chemical Industry, 2020, 48(10): 142-144(in Chinese).