[1] |
WANG Y P, TANG J, YIN G L, et al. The fabrication method and sensing application of fiber grating[J]. Journal of Vibration, Measurment & Diagonosis, 2015, 35(5):809-819(in Chinese). |
[2] |
XU H F, YANG Zh Ch, LIU Sh Ch, et al. Application of fiber Bragg grating sensing technology in bridge piles[J]. Journal of China University of Metrology, 2012, 23(1):52-56(in Chinese). |
[3] |
COELHO L, VIEGAS D, SANTOS J L, et al. Optical sensor based on hybrid FBG/titanium dioxide coated LPFG for monitoring organic solvents in edible oils[J]. Talanta, 2016, 148(1):170-176. |
[4] |
WANG Ch, NI J Sh, WANG J Q, et al. All-fiber velocity sensors applicated in wind power generation and their fabrication process[J]. Laser Technology, 2012, 36(5):689-692(in Chinese). |
[5] |
LIU Sh Zh, ZHANG X, ZHENG X, et al. Application of distributed fiber Bragg grating sensor system in reactor coating layer[J]. Yunnan Electric Power, 2016, 44(1):87-89(in Chinese). |
[6] |
YU H Y, QIN X H, LIU Y D, et al. High-precision FBG sensor for human body temperature detection[J]. Optical Communication Technology, 2016, 40(4):33-35(in Chinese). |
[7] |
LIU Y Y, JIANG F X, HOU J P, et al. Research of inscription technique for multi-wavelength array fiber gratings in ribbon fiber[J]. Laser Technology, 2015, 39(4):484-487(in Chinese). |
[8] |
ZHONG X Y, WANG Y P, QU J L, et al. High-sensitivity strain sensor based on inflated long period fiber grating[J]. Optics Letters, 2014, 39(18):5463-5466. doi: 10.1364/OL.39.005463 |
[9] |
WILLIAMS R J, KRÄMER R G, NOLTE S, et al. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique[J]. Optics Letters, 2013, 38(11):1918-1920. doi: 10.1364/OL.38.001918 |
[10] |
GUO J C, YU Y S, XUE Y, et al. Compact long-period fiber gratings based on periodic microchannels[J]. IEEE Photonics Technology Letters, 2013, 25(2):111-114. doi: 10.1109/LPT.2012.2227701 |
[11] |
NOORDEGRAAF D, SCOLARI L, LAGSAARD J, et al. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers[J]. Optics Express, 2007, 15(13):7901-7912. doi: 10.1364/OE.15.007901 |
[12] |
LEMAIRE P J, ATKINS R M, MIZRAHI V, et al. High pressure H2, loading as a techniquefor achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2, doped optical fibres[J]. Electronics Letters, 1993, 29(13):1191-1193. doi: 10.1049/el:19930796 |
[13] |
NOGUCHI K, EUSUGI N, NEGISHI Y. Loss increase for optical fibers exposed to hydrogenatmosphere[J]. Journal of Lightwave Technology, 1985, 3(2):236-243. doi: 10.1109/JLT.1985.1074175 |
[14] |
ATKINS R M, LEMAIRE P J, ERDOGAN T, et al. Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses[J]. Electronics Letters, 1993, 29(14):1234-1235. doi: 10.1049/el:19930825 |
[15] |
LI J Zh, JIANG D Sh. Hydrogen loading and fiber Bragg grating[J]. Chinese Journal of Material Research, 2006, 20(5):517-522(in Chinese). |
[16] |
LI Y, ZHAO H, ZHU Ch, et al. Study on fiber gratings technology[J]. Laser and Infrared, 2006, 36(s1):749-754(in Chinese). |
[17] |
BISBEE D L. Splicing silica fibers with an electric arc[J]. Applied Optics, 1976, 15(3):796-798. doi: 10.1364/AO.15.000796 |
[18] |
REGO G. Fibre optic devices produced by arc discharges[J]. Journal of Optics, 2010, 12(11):113002. doi: 10.1088/2040-8978/12/11/113002 |
[19] |
ZHENG W N, ZHU L Q, ZHUNG W, et al. Influence of electrode discharge on fiber Bragg grating spectral characteristics[J]. Chinese Journal of Lasers, 2016, 43(7):0706003(in Chinese). doi: 10.3788/CJL |