[1] 王悦, 李慧, 梁精龙, 等. Q235钢的腐蚀行为及表面防腐研究现状[J]. 电镀与涂饰, 2019, 38(11): 545-548. doi: 10.19289/j.1004-227x.2019.11.008WANG Y, LI H, LIANG J L, et al. Current status of research on corrosion behavior and surface corrosion protection of Q235 steel[J]. Electroplating & Finishing, 2019, 38(11): 545-548(in Chinese). doi: 10.19289/j.1004-227x.2019.11.008
[2] WANG H Zh, CHENG Y H, YANG J Y, et al. Influence of laser remelting on organization, mechanical properties and corrosion resistance of Fe-based amorphous composite coating[J]. Surface and Coatings Technology, 2021, 414(3): 127081.
[3] HUANG G K, QU L, LU Y Zh, et al. Corrosion resistance improvement of 45 steel by Fe-based amorphous coating[J]. Vacuum, 2018, 153(3): 39-42.
[4] WANG H Zh, CHENG Y H, ZHANG X Ch, et al. Effect of laser scanning speed on microstructure and properties of Fe based amorphous/nanocrystalline cladding coatings[J]. Materials Chemistry and Physics, 2020, 250: 123091. doi: 10.1016/j.matchemphys.2020.123091
[5] XI W Ch, SONG B X, WANG Z X, et al. Effect of laser re-melting on geometry and mechanical properties of YCF102 cladding layer[J]. Surface and Coatings Technology, 2021, 408: 126789. doi: 10.1016/j.surfcoat.2020.126789
[6] WANG H Zh, CHENG Y H, YANG J Y, et al. Influence of laser remelting on organization, mechanical properties and corrosion resistance of Fe-based amorphous composite coating[J]. Surface and Coatings Technology, 2021, 414(3): 127081.
[7] CHEN W, XU L Y, HAO K D, et al. Additive manufacturing of 15-5PH/WC composites with the synergistic enhancement of strength and ductility[J]. Materials Science and Engineering, 2022, A840: 142926.
[8] ZHENG Zh H, LV J, LOU M, et al. Mechanical and tribological properties of WC incorporated Ti(C, N)-based cermets[J]. Ceramics International, 2022, 48(7): 10086-10095. doi: 10.1016/j.ceramint.2021.12.218
[9] LU L W, FENG D R, WANG Y R, et al. Microstructure, wear resistance and electrochemical properties of spherical/non-spherical WC reinforced Inconel 625 superalloy by laser melting deposition[J]. Journal of Manufacturing Processes, 2022, 74(12): 413-422.
[10] CHEN H, LU Y Y, WU K H, et al. Effect of WC addition on TiC reinforced Fe matrix composites produced by laser deposition[J]. Surface and Coatings Technology, 2022, 434: 128185. doi: 10.1016/j.surfcoat.2022.128185
[11] TAN Ch, HU J, SHI Q, et al. Enhanced hardness and toughness in WC/W2C-Ni-Cu composites fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105805. doi: 10.1016/j.ijrmhm.2022.105805
[12] 樊帅奇, 张蕾涛, 李海涛, 等. WC初始状态对激光熔覆Ni60/WC涂层组织及性能的影响[J]. 材料热处理学报, 2021, 42(6): 157-162.FAN Sh Q, ZHANG L T, LI H T, et al. Effect of initial state of WC on microstructure and properties of laser cladding Ni60 /WC coatings[J]. Transactions of Materials and Heat Treatment, 2021, 42(6): 157-162(in Chinese).
[13] 罗俊威, 牛犇, 陈俊孚, 等. WC颗粒增强金属基复合耐磨材料制备工艺与性能研究[J]. 精密成形工程, 2020, 12(4): 126-131.LUO J W, NIU B, CHEN J F, et al. Preparation technology and properties of metal matrix composite wear-resistant materials reinforced by WC particles[J]. Journal of Netshape Forming Engineering, 2020, 12(4): 126-131(in Chinese).
[14] 丁阳喜, 邬哲. 35CrMo钢表面激光熔覆Ni/WC-Y2O3熔覆层性能研究[J]. 表面技术, 2011, 40(5): 32-34.DING Y X, WU Zh. Research of properties of laser cladding on Ni/WC-Y2O3 surface of 35CrMo steel[J]. Surface Technology, 2011, 40(5): 32-34(in Chinese).
[15] 李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术, 2023, 47(1): 52-58.LI L Ch, WEI X. Study on the effect of laser cladding composite coating and its WC on crack formation mechanism[J]. Laser Technology, 2023, 47(1): 52-58(in Chinese).
[16] 王开明, 雷永平, 魏世忠, 等. WC含量对激光熔覆Ni基WC复合涂层组织和性能的影响[J]. 材料热处理学报, 2016, 37(7): 172-179.WANG K M, LEI Y P, WEI Sh Zh, et al. Effect of WC content on microstructure and properties of laser cladding Ni-based WC composite coating[J]. Transactions of Materials and Heat Treatment, 2016, 37(7): 172-179(in Chinese).
[17] HU Y J, WANG Z X, PANG M. Effect of WC content on laser cladding Ni-based coating on the surface of stainless steel[J]. Materials Today Communications, 2022, 31: 103357. doi: 10.1016/j.mtcomm.2022.103357
[18] XIA Y L, CHEN H N, LIANG X D, et al. Circular oscillating laser melting deposition of nickel-based superalloy reinforced by WC: Microstructure, wear resistance and electrochemical properties[J]. Journal of Manufacturing Processes, 2021, 68(6): 1694-1704.
[19] 张海云, 张金, 朱磊, 等. WC含量对激光熔覆TC4涂层组织及性能的影响[J]. 热加工工艺, 2022, 51(8): 83-87.ZHANG H Y, ZHANG J, ZHU L, et al. Effects of WC content on microstructure and properties of TC4 composite prepared by laser cladding[J]. Hot Working Technology, 2022, 51(8): 83-87(in Chinese).
[20] 李倩, 陈发强, 王茜, 等. 激光熔覆WC增强Ni基复合涂层的研究进展[J]. 表面技术, 2022, 51(2): 129-143.LI Q, CHEN F Q, WANG Q, et al. Research progress of laser-cladding WC reinforced Ni-based composite coating[J]. Surface Technology, 2022, 51(2): 129-143(in Chinese).
[21] 张家诚, 江吉彬, 黄旭, 等. 碳纳米管含量对激光熔覆镍基复合涂层组织与性能的影响[J]. 中国激光, 2022, 49(2): 0202301.ZHANG J Ch, JIANG J B, HUANG X, et al. Effect of carbon nanotubes content on microstructure and properties of laser cladded Ni-based composite coating[J]. Chinese Journal Lasers, 2022, 49(2): 0202301(in Chinese).
[22] CAO J H, HOU Z B, GUO D W, et al. Morphology characteristics of solidification structure in high-carbon steel billet based on fractal theory[J]. Journal of Materials Science, 2019, 54(19): 12851-12862.
[23] WANG H, QU C, ZHENG Y, et al. Study on the effect of vibration on solidification structures in the vibration cast-rolling process[J]. Materialwissenschaft und Werkstofftechnik, 2021, 52(4): 452-459.
[24] ZHU H, LI Y, LI B, et al. Effects of low-temperature tempering on microstructure and properties of the laser-cladded AISI 420 martensitic stainless steel coating[J]. Coatings, 2018, 8: 451.
[25] 董月, 舒林森, 林冉. 激光熔覆Fe-Cr-Mo-Si合金涂层的组织与摩擦磨损性能[J]. 激光与光电子学进展, 2021, 58(19): 1914007.DONG Y, SHU L S, LIN R. Microstructure and friction and wear properties of laser cladded Fe-Cr-Mo-Si alloy coating[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1914007(in Chinese).
[26] 张磊, 陈小明, 霍嘉翔, 等. 激光熔覆马氏体/铁素体涂层的组织与抗磨耐蚀性能[J]. 粉末冶金材料科学与工程, 2022, 27(2): 196-204.ZHANG L, CHEN X M, HUO J X, et al. Microstructure and wear-corrosion resistance performance of laser cladding martensite/ferrite coating[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 196-204(in Chinese).
[27] BAO Y F, GUO L P, ZHONG Ch H, et al. Effects of WC on the cavitation erosion resistance of FeCoCrNiB0.2 high entropy alloy coating prepared by laser cladding[J]. Materials Today Communications, 2021, 26(1): 102154.
[28] SIDDIQUI A A, DUBEY A K. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 2021, 134(8): 106619.