[1] WU P, FAN Y R, GUO J W, et al. High reflectivity aluminum film processed by nanosecond pulse lser[J]. Laser Technology, 2019, 43(6): 779-783 (in Chinese).
[2] HUO X W, QI Y Y, LI Y Q, et al. Research progress of LD-pumped Pr3+ -doped solid-state laser in visible wavelength[J]. Electro-Optic Technology Application, 2019, 34(5): 7-15 (in Chinese).
[3] TU Sh, CAO S S, TIAN L J, et al. A thermphysical model for slab solid-state lasers[J]. Laser Technolgy, 2019, 43(3): 314-317 (in Chinese).
[4] ZAYHOWSKI J J, MOORADIAN A. Microchip lasers[J]. Optical Materials, 1989, 11(2): 427-446.
[5] TAIRA T. Domain-controlled laser ceramic toward giant micro-photonics[J]. Optical Materials Epress, 2011, 1(5): 1040-1050. doi: 10.1364/OME.1.001040
[6] TSUNEKANE M, TAIRA T. High peak power, passively Q-switched Yb∶YAG/Cr∶YAG micro-lasers[J]. IEEE Journal of Quantum Electronics, 2013, 49(5): 454-461. doi: 10.1109/JQE.2013.2252327
[7] DONG J, WANG G Y, REN Y Y. Advances in passively Q-switched solid-state lasers based on composite materials[J]. Chinese Journal of Lasers, 2013, 40(6): 0601003 (in Chinese). doi: 10.3788/CJL201340.0601003
[8] GUO X Y, TOKITA S, KAWANAKA J. 12mJ Yb∶YAG/Cr∶YAG microchip laser[J]. Optics Letters, 2018, 43(3): 459-461. doi: 10.1364/OL.43.000459
[9] ZHAN Y, WANG L, WANG J Y, et al. Yb∶YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber[J]. Laser Physics, 2015, 25(2): 1-4.
[10] BHANDARI R, TAIRA T. > 6MW peak power at 532nm from passively Q-switched Nd∶YAG/Cr4+∶YAG microchip laser[J]. Optics Express, 2011, 19(20): 19135-19141. doi: 10.1364/OE.19.019135
[11] YIN X, MENG J Q, ZU J F, et al. Semiconductor saturable-absorber mirror passively Q-switched Yb∶YAG microchip laser[J]. Chinese Optics Letters, 2013, 11(8): 47-49.
[12] FENG Y, LU J R, TAKAICHI K, et al. Passively Q-switched ceramic Nd3+∶YAG/Cr4+∶YAG lasers[J]. Applied Optics, 2004, 43(14): 2944-2947. doi: 10.1364/AO.43.002944
[13] LI X D, ZHOU Y P, YAN R P, et al. A compact pulse burst laser with YAG/Nd∶YAG/Cr4+∶YAG composite crystal[J]. Optik, 2017, 136: 107-111. doi: 10.1016/j.ijleo.2017.02.022
[14] LI P, SONG T, BAI J X, et al. Research of multi-pulses emission in passively Q-switched Nd3+∶YAG microchip laser[J]. Optik, 2017, 132: 39-45. doi: 10.1016/j.ijleo.2016.12.006
[15] ZHOU J Y, DONG J, CHENG Y, et al. Efficient, nanosecond self-Q-switched Cr, Yb∶YAG lasers by bonding Yb∶YAG crystal[J]. Laser Physics Letters, 2011, 8(8): 591-597. doi: 10.1002/lapl.201110046
[16] DONG J, MA J, REN Y Y, et al. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd∶YAG microchip lasers[J]. Laser Physics Letters, 2013, 10(8): 1-6.
[17] DONG J, HE Y, ZHOU X, et al. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping[J]. Quantum Electronics, 2016, 46(3): 218-222. doi: 10.1070/QEL15826
[18] DONG J, DENG P Z, LU Y T, et al. Laser-diode-pμmped Cr4+, Nd3+∶YAG with self-Q-switched laser output of 1.4 W[J]. Optics Letters, 2000, 25(15): 1101-1103. doi: 10.1364/OL.25.001101
[19] JAZI M E, BAGHI M D, et al. Pulsed Nd∶YAG passive Q-switched laser using Cr4+∶YAG crystal[J]. Optics and Laser Technology, 2012, 44(3): 522-527. doi: 10.1016/j.optlastec.2011.08.013
[20] WANG H X, YANG X Q, ZHAO S, et al. 2ns-pulse, compact and reliable microchip lasers by Nd∶YAG/Cr4+∶YAG composite crystal[J]. Laser Physics, 2009, 19(8): 1824-1827. doi: 10.1134/S1054660X09150420
[21] FU S G, OUYANG X Y, LIU X J. Passively Q-switched Nd∶YAG/Cr4+∶YAG bonded crystal microchip laser operating at 1112nm and its application for second-harmonic generation[J]. Applied Optics, 2015, 54(29): 8804-8807. doi: 10.1364/AO.54.008804
[22] DEGNAN J J. Optimization of passively Q-switched lasers[J]. IEEE Journal of Quantum Electronics, 1995, 31(11): 1890-1901. doi: 10.1109/3.469267
[23] DEGNAN J J. Theory of the optimally coupled Q-switched laser[J]. IEEE Journal of Quantum Electronics, 1989, 25(2): 214-220. doi: 10.1109/3.16265
[24] BURSHTEIN Z, BLAU P, KALISKY Y, et al. Excited-state absorption studies of Cr4+ ions in several garnet host crystals[J]. IEEE Journal of Quantum Electronics, 1998, 34(2): 292-299. doi: 10.1109/3.658716
[25] KOECHNER W. Solid-state laser engineering[M]. Beijing: World Book Publishing Company, 2005: 40-41(in Chinese).