[1] UNITED STATES NATIONAL OCEANIC ATMOSPHERIC ADMINISTRATION. US standard Atmosphere[M]. Washington DC, USA: National Oceanic and Atmospheric Administration Press, 1976: 1-68.
[2] BOLEY C D, RASHMI, DESAI C, et al. Kinetic models and Bri-llouin scattering in a molecular gas[J]. Canadian Journal of Physics, 1972, 50(18): 2158-2173. doi: 10.1139/p72-286
[3] TENTI G, BOLEY C D, DESAI R C. On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(4): 285-290. doi: 10.1139/p74-041
[4] SHE C Y, ALVAREZ R J, CALDWELL L M. High-spectral-resolution Rayleigh-Mie LiDAR measurement of aerosol and atmospheric profiles[J]. Optics Letters, 1992, 17(7): 541-543. doi: 10.1364/OL.17.000541
[5] LIN X, BU L, LIANG K, et al. Simulation analysis of a LiDAR performance for atmospheric temperature profile measurements based on the Fizeau interferometer and multichannel photomultiplier tube[J]. Microwave and Optical Technology Letters, 2022, 64(4): 650-654. doi: 10.1002/mop.33165
[6] 徐铁军. 基于WRF的复杂虚拟大气环境构建技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 17-47.XU T J. Complex virtual atmosphere environment constructing based on WRF[D]. Harbin: Harbin Institute of Technology, 2021: 17-47(in Chinese).
[7] 谭健成. 基于中尺度模式WRF与激光雷达实测的超高层建筑抗风研究[D]. 广州: 华南理工大学, 2021: 20-48.TAN J Ch. Study on the wind resistance design of super high rise building based on the mesoscale WRF simulation and the LiDAR field measurement[D]. Guangzhou: South China University of Technology, 2021: 20-48(in Chinese).
[8] FABELINSKII I L, LEVINE H B. Molecular scattering of light[M]. New York, USA: Springer Science and Business Media Press, 2012: 58-120.
[9] BOYD C D. Nonlinear optics[M]. New York, USA: Academic Press, 2020: 32-46.
[10] COLLIS R T. LiDAR measurement of particles and gases by elastic backscattering and differential absorption[M]. New York, USA: Springer-Verlag Press, 1976: 71-151.
[11] KAIFLER B, KAIFLER N. A compact Rayleigh autonomous LiDAR (CORAL) for the middle atmosphere[J]. Atmospheric Measurement Techniques, 2021, 14(2) : 1715-1732. doi: 10.5194/amt-14-1715-2021
[12] IACONO M J, DELAMERE J S, MLAWER E J, et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13): 2-8.
[13] MONCET J L, CLOUGH S A. Accelerated monochromatic radiative transfer for scattering atmospheres: Application of a new model to spectral radiance observations [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(21): 21853-21866.
[14] IACONO M J, DELAMERE J S, MLAWER E J. Evaluation of upper tropospheric water vapor in the NCAR community climate model (CCM3) using modeled and observed HIRS radiances [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D2): ACL1.1-ACL1.19.
[15] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Monthly Weather Review, 2006, 134(9): 2318-2341. doi: 10.1175/MWR3199.1
[16] DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. Journal of Atmospheric Sciences, 1989, 46(20): 3077-3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
[17] GRELL G A, FREITAS S R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling [J]. Atmospheric Chemistry and Physics, 2014, 14(10) : 5233-5250. doi: 10.5194/acp-14-5233-2014
[18] ZHANG L, MONTUORO R, MCKEEN S A, et al. Development and evaluation of the aerosol forecast member in the national center for environment prediction (NCEP)'s global ensemble forecast system (GEFS-Aerosols v1) [J]. Geoscientific Model Development, 2022, 15(13): 5337-5369. doi: 10.5194/gmd-15-5337-2022
[19] KHAIN A, POKROVSKY A, PINSKY M, et al. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model[J]. Journal of the Atmospheric Sciences, 2004, 61(24): 2963-2982. doi: 10.1175/JAS-3350.1
[20] BAILEY I H, MAcKLIN W C. Heat transfer from artificial hailstones [J]. Quarterly Journal of the Royal Meteorological Society, 1968, 94(399): 93-98. doi: 10.1002/qj.49709439910