[1] 党文佳, 李哲, 卢娜, 等. 0.9~1.0 μm近红外连续光纤激光器的研究进展[J]. 中国光学, 2021, 14(2): 264-274.DANG W J, LI Zh, LU N, et al. Research progress of 0.9~1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274(in Chinese).
[2] 吴春婷, 常奥磊, 温雅, 等. 单掺Nd3+双波长全固态激光器研究进展[J]. 发光学报, 2020, 41(4): 414-428.WU Ch T, CHANG A L, WEN Y, et al. Research progress of Nd3+-doped dual-wavelength all-solid-state laser[J]. Chinese Journal of Luminescence, 2020, 41(4): 414-428(in Chinese).
[3] 李虎, 郭子龙, 杨文婷, 等. 空芯光纤多模干涉型光纤液位传感技术研究[J]. 激光技术, 2022, 46(1): 120-124.LI H, GUO Z L, YANG W T, et al. Research of the liquid level sensing technology based on a hollow fiber multimode interference optical fiber[J]. Laser Technology, 2022, 46(1): 120-124(in Chinese).
[4] 刘伟, 肖虎, 王小林, 等. 掺Yb光纤激光器输出光谱特性研究[J]. 中国激光, 2013, 40(9): 0902006.LIU W, XIAO H, WANG X L, et al. Study on output spectral characteristic of Yb-doped fiber lasers[J]. Chinese Journal of Lasers, 2013, 40(9): 0902006(in Chinese).
[5] BABIN S A, CHURKIN D V, ISMAGULOV A E, et al. Turbulence-induced square-root broadening of the Raman fiber laser output spectrum[J]. Optics Letters, 2008, 33(6): 633-635. doi: 10.1364/OL.33.000633
[6] BEDNYAKOVA A E, GORBUNOV O A, POLITKO M O, et al. Generation dynamics of the narrowband Yb-doped fiber laser[J]. Optics Express, 2013, 21(7): 8177-8182. doi: 10.1364/OE.21.008177
[7] SMIRNOV S V, CHURKIN D V. Modeling of spectral and statistical properties of a random distributed feedback fiber laser[J]. Optics Express, 2013, 21(18): 21236-21241. doi: 10.1364/OE.21.021236
[8] GORBUNOV O A, SUGAVANAM S, CHURKIN D V. Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements[J]. Optics Express, 2014, 22(23): 28071-28076. doi: 10.1364/OE.22.028071
[9] CHURKIN D V, KOLOKOLOV I V, PODIVILOV E V, et al. Wave kinetics of random fibre lasers[J]. Nature Communications, 2015, 6(1): 1-6.
[10] LAPOINTE M A, PICHE M. Linewidth of high-power fiber lasers[C]// Photonics North 2009. Quebec, Canada: International Society for Optics and Photonics, 2009: 232-239.
[11] TURITSYN S K, BEDNYAKOVA A E, FEDORUK M P, et al. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics[J]. Optics Express, 2011, 19(9): 8394-8405. doi: 10.1364/OE.19.008394
[12] KABLUKOV S I, ZLOBINA E A, PODIVILOV E V, et al. Output spectrum of Yb-doped fiber lasers[J]. Optics Letters, 2012, 37(13): 2508-2510. doi: 10.1364/OL.37.002508
[13] KABLUKOV S I, ZLOBINA E A, PODIVILOV E V, et al. Modeling and measurement of ytterbium fiber laser generation spectrum[C]// Laser Sources and Applications. Brussels, Belgium: International Society for Optics and Photonics, 2012: 36-44.
[14] 肖虎. 掺镱光纤激光级联泵浦技术研究[D]. 长沙: 国防科学技术大学, 2012: 10.XIAO H. Study on tandem pumping technology of ytterbium-doped fiber lasers[D]. Changsha: National University of Defense Technology, 2012: 10(in Chinese).
[15] RIEZNIK A A, TOLISANO T, CALLEGARI F A, et al. Uncertainty relation for the optimization of optical-fiber transmission systems simulations[J]. Optics Express, 2005, 13(10): 3822-3834. doi: 10.1364/OPEX.13.003822
[16] CERQUEIRA S A, BOGGIO J M C, RIEZNIK A A, et al. Highly efficient generation of broadband cascaded four-wave mixing products[J]. Optics Express, 2008, 16(4): 2816-2828. doi: 10.1364/OE.16.002816
[17] AGRAWAL G P. Nonlinear fiber optics, third[J]. Lecture Notes in Physics, 2001, 18(1): 195-211.
[18] BABIN S A, CHURKIN DV, KABLUKOV S I, et al. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser[J]. Journal of the Optical Society of America, 2007, B24(8): 1729-1738.
[19] 谌鸿伟, 沈炎龙, 陶蒙蒙, 等. 1150 nm掺镱光纤激光器输出特性实验研究[J]. 光子学报, 2016, 45(10): 1014001.CHEN H W, SHEN Y L, TAO M M, et al. Experimental investigation of an 1150 nm Yb-doped fiber laser[J]. Acta Phtonica Sinica, 2016, 45(10): 1014001(in Chinese).
[20] HUANG Zh H, LIANG X B, LI Ch Y, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302. doi: 10.1364/AO.55.000297