[1] |
赵懿臻, 张航, 蔡江龙, 等. 激光增材制造BCC基难熔高熵合金组织与性能研究. 中国激光, 2022, 49(14), 1402105.ZHAO Y Zh, ZHANG H, CAI J L, et al. Study on the structure and properties of BCC based refractory high entropy alloy manufactured with photoadditive[J]. Chinese Journal of Lasers, 2022, 49(14): 1402105(in Chinese). |
[2] |
PRIYANKA K, AMIT K G, RAJESH K M, et al. A comprehensive review: Recent progress on magnetic high entropy alloys and oxides[J]. Journal of Magnetism and Magnetic Materials, 2022, 554: 169142. doi: 10.1016/j.jmmm.2022.169142 |
[3] |
TSAI M H, YEH J W. High-entropy alloys: A critical review[J]. Materials Research Letters, 2014, 2(3): 107-123. doi: 10.1080/21663831.2014.912690 |
[4] |
CAI Zh B, CUI X F, LIU Zh. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing[J]. Optics and Laser Technology, 2018, 99: 276-281. doi: 10.1016/j.optlastec.2017.09.012 |
[5] |
SHU F Y, LIU S, ZHAO H Y. Structure and high-temperature pro-perty of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018, 731: 662-666. doi: 10.1016/j.jallcom.2017.08.248 |
[6] |
LI Sh, TOMIKO Y. High-temperature oxidation performance of laser-cladded amorphous TiNiSiCrCoAl high-entropy alloy coating on Ti-6Al-4V surface[J]. Surface & Coatings Technology, 2022, 433: 128123. |
[7] |
DENG Ch, WANG Ch, CHAI L J. Mechanical and chemical properties of CoCrFeNiMo0.2 high entropy alloy coating fabricated on Ti6Al4V by laser cladding[J]. Intermetallics, 2022, 144: 107504. doi: 10.1016/j.intermet.2022.107504 |
[8] |
ARIF Z U, KHALID M Y, RASHID A A, et al. Laser deposition of high-entropy alloys: A comprehensive review[J]. Optics & Laser Technology, 2022, 145: 107447. |
[9] |
ZHANG M N, WANG D F, HE L J. Microstructure and elevated temperature wear behavior of laser-cladded AlCrFeMnNi high-entropy alloy coating[J]. Optics and Laser Technology, 2022, 149: 107845. doi: 10.1016/j.optlastec.2022.107845 |
[10] |
LIN Ch M, JUAN Ch Ch, CHANG Ch H. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys[J]. Journal of Alloys and Compounds, 2015, 624: 100-107. doi: 10.1016/j.jallcom.2014.11.064 |
[11] |
HUANG T D, WU Sh Y, JIANG H. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys[J]. International Journal of Minerals, 2020, 27(10): 1318-1325. |
[12] |
LI Zh T, JING C N, FENG Y. Microstructure evolution and properties of laser cladding Nb containing eutectic high entropy alloys[J]. International Journal of Refractory Metals and Hard Materials, 2023, 110: 105992. doi: 10.1016/j.ijrmhm.2022.105992 |
[13] |
ZHANG H, HE Y Z, PAN Y. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding[J]. Materials & Design, 2011, 32(4): 1910-1915. |
[14] |
ZHANG H, HE Y, PAN Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening[J]. Scripta Materialia, 2013, 69 (4): 342-345. doi: 10.1016/j.scriptamat.2013.05.020 |
[15] |
QIU X W, ZHANG Y P, HE L, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy[J]. Journal of Alloys and Compounds, 2013, 549 (5): 195-199. |
[16] |
YE X, MA M, LIU W, et al. Synthesis and characterization of high-entropy alloy AlxFeCoNiCuCr by laser cladding[J]. Advances in Materials Science and Engineering, 2011, 7: 485942. |
[17] |
HUANG C, ZHANG Y, VILAR R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials & Design, 2012, 41: 338-343. |
[18] |
DENG Ch, WANG Ch, CHAI L J. Mechanical and chemical pro-perties of CoCrFeNiMo0.2 high entropy alloy coating fabricated on Ti6Al4V by laser cladding[J]. Intermetallics, 2022, 144: 107504. doi: 10.1016/j.intermet.2022.107504 |
[19] |
ZHANG H X, DAI J J, SUN C X. Microstructure and wear resistance of TiAlNiSiV high-entropy laser cladding coating on Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2020, 282: 116671. doi: 10.1016/j.jmatprotec.2020.116671 |
[20] |
YAO H W, LIU Y M, SUN X H, et al. Microstructure and mecha-nical properties of Ti3V2NbAlxNiy low-density refractory multielement alloys[J]. Intermetallics, 2021, 133: 107187. doi: 10.1016/j.intermet.2021.107187 |
[21] |
GUO S, NG C, LU J, et al. Effect of valence electron concentration on stability of FCC or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10): 103505. doi: 10.1063/1.3587228 |
[22] |
LI Zh T, JING C N, FENG Y, et al. Microstructure evolution and properties of laser cladding Nb containing eutectic high entropy alloys[J]. International Journal of Refractory Metals and Hard Materials, 2023, 110: 105992. doi: 10.1016/j.ijrmhm.2022.105992 |
[23] |
张鸿羽, 余敏, 华俊伟, 等. Mo元素对Fe-Cr-Mo激光熔覆层组织及性能的影响[J]. 中国激光, 2021, 48(22): 2202010.ZHANG H Y, YU M, HUA J W, et al. The effect of Mo element on the structure and properties of Fe-Cr-Mo laser cladding layer[J]. Chinese Journal of Lasers, 2021, 48(22): 2202010(in Chinese). |