文章编号: 1001-3806(2008)03-0284 03

MgErLiNbO3 晶体的激光性能和 550mm 寿命特性研究

王义杰¹,于海涛¹,孙 亮²,徐玉恒²

(1. 哈尔滨理工大学 应用科学学院,哈尔滨 150080, 2哈尔滨工业大学 材料学院,哈尔滨 150001)

摘要:为了测试 Mg:EitLNbO3晶体的光损伤阈值和红外光谱,采用 Czochralsk i技术生长出优质的 Mg:Ey:LNbO3 (x = 0.02, 0.04, 0.06, 0.08, y = 0.01(摩尔分数))晶体。通过实验得出 Mg(0.06):EitLNbO3和 Mg(0.08):EitLNbO3晶体抗光损伤阈值比 LNbO3晶体提高 2个数量级以上,且它们的红外光谱 OH⁻⁻吸收峰移到 3535 m⁻⁻¹附近;在波长 510 mm ~ 580 mm 范围内得到 MgEitLNbO3 晶体稳态发射谱。结果表明, Mg²⁺浓度增加抗光损伤能力增加,掺进摩尔分数为 0.04 的 MgO 是 MgEitLNbO3 晶体寿命最长的晶体。

关键词: 激光技术; M g E i L N bO₃ 晶体; 激光性能; 光损伤阈值; 寿命特性 中图分类号: 0734 文献标识码: A

Study on laser property and 550nm lifetime characteristics of lith ium niobate doped with magnesium and erbium

WANG Yi-jie¹, YUH ai-tao¹, SUN Liang², XU Yu-heng²

(1. App lied Science College, Harbin University of Science and Technology, Harbin 150080, China 2. School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, China)

Abstract In order to measure the photo damage threshold and infrared spectra of Mg: E i L NbO₃ crystals, the high quality Mg: Er₂: L NbO₃ (x = 0.02, 0.04, 0.06, 0.08, y = 0.01 (mole fraction)) crystals were grown by Czochralski technique. The experiment indicated that the photo damage resistance ability of Mg (0.06): Er: L NbO₃ and Mg (0.08): Er: L NbO₃ crystals in proved the two orders magnitude over higher than that of L NbO₃ crystals and their OH⁻ absorption peak of infrared spectra shifts to 3535 m⁻¹ nearby. The experiment gained the steady state shoot spectra of Mg E i: L NbO₃ crystals in wavelength 510nm ~ 580nm finding doped with mole fraction 0.04 of MgO. The results showed that the Mg²⁺ concentration increased the photo damage resistance ability increased and the lifetime of Mg E i: L NbO₃ crystal doped with mole fraction 0.04 of MgO. The results showed that the Mg²⁺ concentration increased the photo damage resistance ability increased and the lifetime of Mg E i: L NbO₃ crystal doped with mole fraction 0.04 of MgO.

Keywords laser technique, Mg Erit NbO3 crystal laser propery, photo damage threshold lifetime characteristics

引 言

Ei LNbO3 晶体结合了 Eir离子的激光特性和 LNbO3晶体优良的电光、声光^[1]和非线性光学性能, 从而引起人们的研究兴趣^[2]。尤其是 Er离子可以在 光纤通信的最小损耗的第 3个窗口 1 53µm 波长附近 产生激光,也可以进行光放大^[3]。另一方面,这种晶 体材料可以在集成光学中使有源器件和无源器件如耦 合器、滤波器和调制器集成到一起,对于集成光学具有 重要意义^[4]。通过周期性极化 EriLNbO3 晶体的准位 相匹配、自激发可以同时产生 3个原色的激光^[57]。

作者一方面报道以提拉法获得组分均匀且无各种

E-mailwyjie@tom.com

收稿日期: 2007-04 24, 收到修改稿日期: 2007-07-04

宏观缺陷的新型光波导基片材料和激光基质材料 MgEriLNbO3晶体。另一方面,通过X射线和红外光 谱手段,研究Mg离子在LNbO3晶体中的占位情况以 及Mg的掺量对MgEriLNbO3晶体抗光损伤能力的影 响。同时也研究了550mMgEriLN的寿命特性。

1 实 验

1.1 Mg Er:LNbO3 晶体的生长

原料为 Nb₂O₅(4N), L_kCO₃(4N), MgO(光谱纯) 和 Er₂O₃(光谱纯), 成分配比为 n(Li) h(Nb) = 0 946,在 LNbO₃中掺入 0 005(摩尔分数,下同)的 E_kO₃,并分别掺入摩尔分数为 0 02, 0 04, 0 06, 0 08 的 MgO, 提拉法生长 0 02Mg: 0 01Er: LNbO₃, 0 04Mg: 0 01Er: LNbO₃, 0 06Mg: 0 01Er: LNbO₃, 0 08Mg: 0 01Er: LNbO₃晶体。Mg: Er: LNbO₃ 晶体成 分配比见表 1。处理后晶片尺寸为 10mm × 8mm ×

作者简介: 王义杰(1952-),女,教授, 主要研究领域为功能材料。

		(=-)	
$L N bO_3$			1 4× 10
1#	0 02	0. 01	6. 4×10^2
2#	0 04	0. 01	9. 4×10^2
3#	0 06	0. 01	3. 3×10^3
4#	0 08	0. 01	2. 1×10^2

lmm(z, x, y), 进行光学级抛光。

1 2 Mg Er: LNbO₃ 晶体光折变阈值的测试^[8]

采用透射光斑变形法测试 $M_g:Er:LNbO_3$ 晶体光 损伤阈值。图 1为透射光斑变形法测试晶体光损伤值 光路图。以 Ar^{+} 激光器作光源, $\lambda = 514$ 5nm。光束

Fig 1 Setup diagram formeasurement of optical damage thresholds M₁, M₂—reflect mirror L—light shed, PD—power detector BS—beam splitter, L—len, S—screen, A—Ar laser

照射在晶体的 y 面。激光功率密度较低时, 透射光斑是圆形, 当功率密度达到一定值时, 光斑开始变形, 沿着晶体 c 轴伸长。晶体样品的光损伤阈值测试结果见表 1。

由测试结果看出, $M_g: E: LNbO_3$ 晶体的光损伤阈 值高于 $LNbO_3$ 晶体且随着 M_g^{2*} 浓度增加而增加。 3^* 晶体和 4^* 晶体抗光损伤阈值比 $LNbO_3$ 晶体提高 2个 数量级以上。

1 3 MgErLNbO3 晶体抗光损伤阈值增强机理

由锂空位模型,在 LNbO3中存在锂空位 V_{Li} 和反 位铌 Nb⁴⁺_{Li} 两种本征缺陷, 光折变中心 Nb⁴⁺_{Li} /Nb⁵⁺_{Li} 使 LNbO3 晶体产生光折变效应。在 LNbO3 中掺进 M g^{2+} 和 Er^{3+} , 两种离子取代 Nb⁴⁺_{Li}, Nb⁴⁺_{Li} 使其浓度降 低, 使 Nb⁴⁺_{Li} /N b⁵⁺_{Li} 光折变中心作用减弱, 提高了晶体光 损伤阈值, 当 M g^{2+} 达到阈值浓度完全取代 Nb⁴⁺_{Li} 使 3^* 晶体和 4^* 晶体抗光损伤阈值比 LNbO3 晶体提高 2个 数量级以上。

14 Mg Er:LNbO3 晶体的红外光谱

H⁺在 LNbO₃ 晶体生长过程中进入晶体内部与氧 结合, 以 OH⁻形式影响其光折变性能, 对全息光栅热 固定、光波导、暗电导等产生重要影响。 OH⁻ 的吸收 峰随着掺进杂质的浓度和 LNbO₃ 晶体中 [Li] /[Nb] 比变化而移动。通过 OH⁻ 的吸收峰的位置可以确定 掺杂离子的阈值浓度和 LNbO₃ 晶体的缺陷情况。 采用 AV atar 360型 FT-R 红外光谱仪测试M giEr:L NbO₃ 晶体的红外光谱,测试结果如图 2所示。

Fig 2 In frared spectra of Mgi Eri LNbO3 crystal

红外光谱取值范围为 3300 m⁻¹ ~ 3700 m⁻¹, M g·E r·LN bO₃晶体和掺量低于 0 05的 M g·E r·LN bO₃ 晶体吸收光谱中 OH⁻的吸收峰位于 3485 m⁻¹附近, 而 M gO 的掺量在 0 05以上时,相应吸收峰移到 3535 m⁻¹附近。

15 MgErLNNO3 晶体 OH 吸收峰移动机理

根据锂空位模型,在LNbO3 晶体中存在锂空位 VLi 和反位铌 Nb⁴⁴ 两种本征缺陷,由于锂空位 V_{Li}带负电 荷,它很容易吸引 H^+ , H^+ 与 O^{2-} 结合形成 OH^- 。 OH^- 与Win和 Nb⁴⁺ 形成 4Vin Nb⁴⁺ O-H 缺陷集团振动在 ³⁴82 m⁻¹附近,当 M g²⁺ 未达到阈值浓度, 它取代 Nb⁴⁺_{Li} 占据锂位,它对 H^{\dagger} 起排斥作用, H^{\dagger} 不会聚集在 $M_{g_{1}}^{4+}$ 附 近,此时 OH⁻ 吸收峰仍然聚集在锂空位附近。OH⁻ 吸 收峰仍在 3482 m^{-1} 附近。 Er^{3+} 在 Er: LNbO₃ 晶体中同 时取代 Nb⁴⁺_L和 Lⁱ占据 Li位以 E²⁺_{Li} 形式存在。形成 $E_{T_i}^{2+}$ 需要 2个 V_{T_i} 达到电荷平衡,这时 OH⁻ 与 2 V_{T_i} E $_{T_i}^{2+}$ 形成 2V_{L1}⁻E²⁺_{L1} O-H 缺陷集团, 振动在 3488 m⁻¹位置。 在 $M_g: E_r: LNbO_3$ 晶体中当 M_g^{2+} 未达到阈值浓度, 4V_{Li}Nb_{Li}⁴⁺ O-H和 2V_{Li}E²⁺_{Li} O-H 两个缺陷集团联合振 动 3485cm⁻¹附近。当 M g²⁺达到阈值浓度, M g²⁺开始进 入 Nb⁵⁺位形成 M ³⁻_{Sb}, 其中 M ³⁻_{Sb}比 V_L更具有吸引 H⁺ 的能力,因此晶体中的 H⁺便聚集在附近,红外光谱主要 反映 M_{Sb}^{3-} O—H 缺陷集团的受激振动。因为 M_{Sb}^{3-} 比 V_L 对 H⁺具有更强的吸引力, OH⁻ 吸收光子受激振动需 要更高的能量, M_{gNb}³⁻ O-H 震动 3535cm⁻¹附近(紫移)。 1 6 MgErLNbO3 晶体吸收光谱的光谱项

E³⁺的基态光谱项为⁴ I_{5/2},由吸收光谱测试结果 Mg:Er:LNbO₃晶体有下列(见表 2)光谱项的跃迁组成。

实验结果⁴ $I_{15/2}$ ^{→ 4} $G_{11/2}$ 跃迁能级的吸收振子强度 最高, 是利用率最高的抽运光波长,⁴ $I_{15/2}$ ^{→ 2} $H_{11/2}$ 跃迁 能级的吸收振子强度也较高, 用此波长的光源进行抽 运利用率也较高。

rable 2 ransition spectra term and non-obgous energy eventing $L \neq L \mid NOO_3$ crystal				
transition spectra tem	transition energy level	transition spectra term	transition energy level	
⁴ G _{21/2}	$0.~378^{\!\mu}m($ the strongest absorption peak)	⁴ I _{11/2}	0 974 ¹ m	
² H _{11/2}	0. 520µm 0. 523µm (strong ab sorption p eak)	⁴ I _{13/2}	$1 \ 059^{\mu}m \sim 1.\ 542^{\mu}m$	
⁴ F _{9/2}	0. 653µm			

飞秒激光器分析 550nm 寿命特性 2

室温下,在波长 510nm ~ 580nm 范围内,得到 MgErLNbO,稳态发射谱,如图 3所示。随着 MgO 的

Fig 3 ErL NbO₃ emission spectra of high doping magnesium oxide

加入, Mg浓度提高超出光损伤阈值, 发射强度逐渐提 高。然而,当晶体的掺杂在晶体的光损伤阈值浓度下, 发射强度是逐渐减弱的。在重掺镁晶体中,除了发射 峰在 535m 处相对于不掺杂或少量掺杂晶体显示出 蓝移外,其它的 9处主要峰值相比只有略微的不同。 作者分析了样品在 550mm 的强度衰减曲线图,每一个 指数衰减曲线可以很好地符合到时间决定谱图。图 4 反映了 MgO 掺入的浓度对寿命测量的影响;可以看

Fig 4 E:LNbO3 photo attenuation mechanics chart of high doping magne sium oxide

到,当MgO掺入量超出光损伤阈值时,寿命急剧地减 小。它的寿命比低于光损伤阈值时减少 82 2%,另 外,当MgO的掺入量低于阈值浓度时,寿命的增长与

掺入量成比例。但是当重掺 MgO 时,情况却相反。最 长寿命在铌酸锂晶体掺入摩尔分数为 0.04的 MgO 时,它的寿命相比未掺杂晶体延长了近 33 6%。 526nm和 559nm的寿命特性与 550nm 很相近。

3 结 论

采用提拉法生长 M g Er L NbO3 晶体,测试晶体的 抗光损伤阈值, 3[#]和 4[#]晶体样品抗光损伤阈值比 LNbO₃提高 2个数量级以上, OH⁻吸收峰移到 3535 m⁻¹附近。利用裡空位模型对 Mg: Er: LNbO3 晶 体, 抗光损伤机理、OH⁻吸收峰移动机理进行研究。 Mg(0 04) fr:LNbO3晶体寿命最长,MgEr:LNbO3 晶 体的激光性能优于 Er:LNbO3 晶体。

> 考 文 献 参

PANG Zh G, YU K X, FAN H. Study of the optimum operating mode in lithium niobate acoustorelectroropticmodulator[J]. Laser Technol ogy, 2007, 31(2): 160-162(in Chinese).

- [2] RUAN Y F, LIB L, LIW R. Spectral data and Stark-level energies of Er³⁺ ions in lithium niobate [J]. Journal of Synthetic Crystals 1995, 24(4): 272-277 (in Chinese).
- [3] CHEN D Zh, GAO J B W EN Zh L, et al. Electro-optic Q-switch technique for 1. 544m Erglass lasers [J]. Laser Technology, 2001, 25 (2): 95-96(in Chinese).
- [4] HUW Sh, CHEN Sh F. The development of EicLNb0, waveguide lar ser [J]. Optoelectronic Technology and Information, 2000, 13(6): 1-7 (in Chinese).
- [5] MAYERS L E, ECKARDT R C, FEJER M M, et al. Quasi phasematched optical parametric oscillators in bulk periodically poled LNbO₃[J]. J O S A, 1995 B12(11): 2102-2116.
- [6] BYER R L. Quasiphasem atched nonlinear interactions and devices [J]. Jou mal of Nonlinear Optical Physics and Materials 1997, 6(4): 549-592
- [7] BISSON S E, ARM STRONG K M, KULP T, et al. Broadly tunable mode hop-tuned CW optical parametric oscillator based on periodically poled lithium niobate [J]. ApplOpt 2001, 40(33): 6049-6055.
- [8] LIM H, GAO Y K, JIA X L, et al. G row th and optical properties of lar ser crystalNd: ZnO: LiNbO₃ [J]. Chinese Journal of Lasers, 1994, 2 (1): 72-76(in Chinese).