CCD 测量激光光斑方法研究

胡林亭 卢显葵 金俊坤 韩福利 (中国白城兵器试验中心,白城,137001)

摘要:给出了用 CCD 进行激光光斑成像试验的结果,分析了激光光斑的测量精度和测量中存 在的问题,并给出了解决途径。

关键词: CCD 激光光斑 测量方法

Laser facula measurement with CCD

Hu Linting, Lu Xiankui, Jin Junkun, Han Fuli (Baicheng Weapon Test Centre, Baicheng, 137001)

Abstract: This paper gives the CCD image test results. The laser facula measurement error and the test problems are analyzed. Some solutions are presented in the paper.

Key words: CCD laser facula measurement method

引 言

测量 NdBY AG 激光器的指示精度,实质是测量激光光斑的照射位置。用 CCD 进行非接触测量,虽然具有设备简单、使用方便等优点,但到目前为止,还未见有应用 CCD 在野外远距 离定量测量该波长激光光斑的报道。能否用 CCD 进行野外远距离测量,关键要解决两个问 题:一是 CCD 对激光响应灵敏度能否满足野外远距离测量要求;二是测量精度能否满足要求。 针对上述问题,我们用平面靶板做靶标,用MTV21881 型 CCD 和85 式手持激光测距机进行了 试验研究。

1 CCD 对激光光斑的成像试验结果

为获得 CCD 对激光脉冲的响应特性及太阳光对测量的影响,我们用 CCD 在白天和晚间 分别进行了激光光斑的成像试验。以人眼刚好可清晰观察到监视器上激光光斑时的试验条 件,计算出白天试验中 CCD 像面激光脉冲能量密度为 1.2nJ/cm²,晚间 CCD 像面激光脉冲能 量密度为 0.8nJ/cm²。

从以上试验结果可看出,太阳光形成的强背景噪声降低了 CCD 的测量范围,要提高 CCD 测量距离,必须抑制太阳光噪声。

2 CCD 测量精度分析

211 激光光斑位置的计算

计算激光器指示精度,实质是计算激光光斑的照射位置精度。按照测量要求,以激光光斑 的重心位置表示激光光斑照射位置。以下只分析测量激光光斑位置的精度。

以靶板十字线中心为原点建立平面直角坐标系 ox y',该坐标系在 CCD 像面上的投影

oxy, oxy 作为像面直角坐标系。x 轴为水平方向, y 轴为垂直方向。为计算方便, 坐标系 oxy' 坐标单位为 m, 坐标系 oxy 坐标单位为 mm。

在激光器一个照射周期内,可认为太阳光强是不变的,因靶板是均匀的朗伯反射体,所以, 没有接收到激光光斑的 CCD 像元的灰度值是相同的。因光斑直径远小于靶板大小,光斑不会 照到靶板外边,只需计算靶板上的光斑。设 CCD 像元的灰度值为 I, CCD 像面上光斑重心坐 标为(x,y), CCD 的总像元数为 n,则有:

$$\begin{cases} \overline{\mathbf{x}} = \mathbf{E} (\mathbf{x}_{i} \# \mathbf{I}_{i}) / \mathbf{E} \mathbf{I}_{i} & i = 1, 2, , , n \\ y = \mathbf{E} (\mathbf{y}_{i} \# \mathbf{I}_{i}) / \mathbf{E} \mathbf{I}_{i} & i = 1, 2, , , n \end{cases}$$
(1)

为消除系统误差,实际测量时,我们按下式计算激光光斑重心位置:

Sc =
$$(C_x @x)^2 + (C_y @y)^2$$
 (2)

式中, C_x 和 C_y 分别为 x 和 y 方向的比例因子。

G和G计算方法如下:

$$\begin{cases} C_x = \frac{1}{N} E \frac{L_x}{l_x} \\ C_y = \frac{1}{N} E \frac{L_y}{l_y} \end{cases}$$

式中, L_x, L_y 分别为靶板上的校准十字线在 x 和y 方向的长度, l_x, l_y 分别为L_x, L_y 在 CCD 像 面的成像尺寸, N 为拍摄次数。

每次测量前,在靶板上设置一校准十字线板,可精确计算比例因子,因此,比例因子的误差可忽略。

212 误差源分析

主要误差源有几种:(1)靶板与 CCD 像面夹角测量误差和光学系统成像误差。这些误差 可做系统误差处理,利用修正系数来消除。(2)像元能量重心位置误差。每个像元接收到能量 的重心是未知的。计算光斑重心时,用像元中心坐标代替能量重心坐标,存在数学模型误差 R。R的最大值为像元宽度k的一半。设 R是正态分布,则有: R= k/6。(3)激光光斑灰度量 化误差。有效灰度为 m_l,光斑峰值光强为 A/(2P),灰度量化误差 R 是平均分布的随机误差, 则: R = A/(4Pm_l $\sqrt{3}$)

从以上分析可知,光斑重心位置测量误差主要由位置量化误差和灰度量化误差构成。

213 误差计算模型的建立

$$\mathbf{R}_{\infty}^{2} = \mathbf{E} \left[\frac{5 \operatorname{Sc}}{5 \operatorname{x}_{i}} \mathbf{R}_{x} \right]^{2} + \mathbf{E} \left[\frac{5 \operatorname{Sc}}{5 \operatorname{y}_{i}} \mathbf{R}_{y} \right]^{2} + \mathbf{E} \left[\frac{5 \operatorname{Sc}}{5 \operatorname{I}_{i}} \mathbf{R} \right]$$

设光斑覆盖 CCD 有效像元数为 n, 且 R> R, 选取光斑几何中心为坐标系原点, 可得:

$$R_{Sc}^{2} = \frac{E I_{i}^{2}}{(E I_{i})^{2}}R_{y}^{2} + \frac{C_{x}^{4} \bar{x}^{2} E x_{i}^{2} + C_{y}^{4} \bar{y}^{2} E y_{i}^{2}}{Sc^{2} (E I_{i})^{2}}R_{I}^{2} + \frac{nSc^{2}}{(E I_{i})^{2}}R_{I}^{2}$$
(3)

上式用于实际测量时计算激光光斑位置测量精度。

214 CCD 测量精度估算

以 CA2DI20256 型 CCD 为例计算测量误差。该型 CCD 参数为:像元尺寸 16Lm @16Lm;

为便于估算, CCD 上光斑近似取为圆形, 设光斑能量是高斯分布, 即:

$$I(x, y) = Ae^{-(x^2 + y^2)/2}/(2P)$$

设靶板上光斑长半轴(yc轴)为 Rc, CCD 上光斑半径为 R, 利用 G> G, 由(3)式可得 CCD 的测量精度估算公式:

$$R_{Sc}^{2} = \frac{R^{2}(1 - e^{-R^{2}})}{144n(1 - e^{-R^{2}/2})^{2}} + \frac{2Rc^{2}(2n + 3\sqrt{Pn} + P) + 3PnSc^{2}}{144P^{3}m_{1}^{2}(1 - e^{-R^{2}/2})^{2}}$$
(4)

T able 1 The effect of valid gray scale on measurement precision

valid gray scale	measurement precision(m)
20	3.084
50	1.234
100	0.617
200	0.309
500	0. 124
800	0.0774

按靶板尺寸10m@10m, 靶板与地面夹角30b, 最大照 射距离5000m, 激光发散角0.3mard计算, CCD像面上光 斑长轴半径、靶面上光斑的长轴半径和有效像元数分别为:

R = 0.24mm; Rc = 1.5m; n = 706.

激光器在靶板上最大照射偏差估为 Sc= 1m。

在上述参数不变时,不同的有效灰度等级对 CCD 测量 精度影响很大,详见表 1。

由表1可知, m_I > 800 时, 光斑测量精度小于0.1m。 因此, 只要选取合适的CCD, 可以满足测量要求。

3 CCD 测量激光光斑的几个问题及解决途径

311 CCD 漏测对测量精度的影响

设激光器照射光斑位置精度为 R, 精度 R的估计为 R, 计算光斑子样数为 n, 子样大小引起的相对误差 C 为^[2]: C= ℝ R= $1/\sqrt{2(n-1)}$

由上式可知,当光斑子样数 n 足够大时,漏测光斑对测量精度的影响可以忽略。

312 阳光背景的抑制

激光脉宽约为 15ns, CCD 帧积分时间约为激光脉宽的 10⁶ 倍。当阳光直射靶板时, 形成强背景噪声, 光斑图像的 信噪比严重下降, 降低 CCD 测量距离。受窄带滤光片制造 工艺限制, 带宽越窄, 透过率越低。要有效抑制阳光噪声, 可选用外同步 CCD, 减少 CCD 帧积分时间, 抑制背景噪 声, 提高信噪比。

313 CCD 有效像元数和有效灰度等级对测量精度的影响

以前述的 CA2D 20256 型 CCD 为例。将(4) 式中 R 表述为有效像元形式,则有:

Fig. 1 Measurement error varying with pertinent parameters

$$R_{Sc}^{2} = \frac{k^{2} \left(1 - e^{\frac{nk^{2}}{P}}\right)}{144P \left(1 - e^{-\frac{nk^{2}}{2P}}\right)^{2}} + \frac{2Rc^{2}(2n + 3\sqrt{Pn} + P) + 3PnSc^{2}}{144P^{3}m_{1}^{2} \left(1 - e^{-\frac{nk^{2}}{2P}}\right)^{2}}$$

通过改变 CCD 成像系统的焦距,可控制 CCD 上光斑尺寸,相应的有效像元数 n 也随之变化,由上式可计算出测量精度 R,随相关参数变化情况,见图 1。由图 1 可知, R~ n 曲线有极小值点,当 m₁ 足够大时,在极值点附近 R,对 n 的变化不敏感。因此,选取 CCD 时,灰度等级

国外激光反卫星技术发展综述

付伟

(东北电子技术研究所,锦州,121000)

摘要:为了有效对抗军事卫星,先进国家已经开展了反卫星激光武器的研制,并具备初步的 反卫星能力。作者对国外激光反卫星技术的发展现状加以综述。

关键词:反卫星 激光武器 激光致盲

Development of laser anti2satellite technology at abroad

Fu Wei

(Northeast Institute of Electronic Technology, Jinzhou, 121000)

Abstract: This paper briefly describes present state of laser ant2satellite technology at abroad. Key words: ant2satellite laser weapon laser blinding

引 言

在现代战争中,卫星的作用越来越大。海湾战争就是世界上首次将卫星综合应用于实战的一次典型战例,多国部队共动用和利用了 10 类约 100 颗军用与民用卫星。而在北约空袭南联盟的作战中,使用的卫星更多;单在航天侦察与导航方面,就使用了 50 多颗卫星,其中包括:3颗雷达成像侦察卫星,3颗照相侦察卫星,3颗侦察小卫星,6颗气象卫星以及 24 颗导航卫星^[1]。这充分体现了卫星在现代化战争中所具有的重要作用。

为了争夺制空间权,美俄双方都在积极发展卫星技术的同时发展反卫星武器,并均已具备 不同程度的激光反卫星能力。前苏联一直进行激光武器反卫星的研究工作。1975年和1981

越高越好,其次控制 CCD 有效像元数 n,使 R。 在极小值附近区间内。图 1 中 R₆~ n 曲线的 R。 极小值点及相应的 n 值见表 2。

4 结 论

只要合理设计测量系统,CCD可以用于野 外远距离激光光斑测量。

参考文献

- 1 费业泰1 误差理论与数据处理. 北京:机械工业出版 社,1981:60
- 2 潘承泮1 武器弹药试验的检验的公算与统计.北京:国防工业出版社, 1980:392

作者简介: 胡林亭, 男, 1964 年 8 月出生。工程师。现从事激光测试技术研究工作。

Table 2 Minimum measurement error versus		
valid gray scale		
valid gray	valid	measurement
scale	pixel	precision(m)
20	30988	0. 791
50	30989	0.317
100	30990	0.158
200	30993	0.0792
500	31020	0.0317
800	31070	0.0198