减汽K(H)

Vol_12, No.3

光磁盘用物镜

发明详细说明

本发明有关用于光磁盘上记录再生的大数值孔径(NA)的物镜。

光磁盘用物镜已有特公昭52-44209和特开昭54-127339所提出的方案。

但是,这些物镜存在数值孔径小(0.35左右),透明度不充分,而且这些物镜作用距离 短,并随NA的增大而愈益变短,自动聚焦等的控制困难。

本发明的目的在提供NA大(0.8~0.9)、作用距离长(1~1.5mm)、能充分控制、而且 小型轻量的光磁盘用聚焦物镜。采用这样的物镜,可在录相磁盘、数字自动磁盘等光磁盘上 高密度地进行记录和再生。

下面,说明本发明。

1

本发明的光磁盘用物镜由两组构成。第1组由两块透镜构成,装配在物体一侧,第2组 由四块透镜组成、装配在成象一侧。

在第1组的两块透镜中,其中一块是正凹凸透镜,另一块是负凹凸透镜。正凹凸透镜装 在物体一侧,负凹凸透镜的凹面向着物体一侧,即装在上述正凹凸透镜的成象一侧。

在构成第2组的四块透镜中,其中两块是以凸面接物的凸透镜,另外两块是正凸透镜。 构成第2组的透镜,从物体一侧起,向成象一侧接凸透镜,正凹凸透镜,正凹凸透镜的顺序 装配。正凹凸透镜都是以其凸面向物体一侧装配。

在这种聚焦透镜中,第1组的焦距为f₁,第2组的焦距为f₂,整个系统的焦距为f,从物 体一侧起,第5、第6和第10个透镜面的曲率半径分别为r₈、r₈和r₁₀。当物体一侧起第3、 第4块透镜对8200入波长的光的折射率分别为n₃、n₄时,此物镜满足下列4个条件;

(1) $0.35 < r_{s} / r_{s} < 0.65$; (2) $0.65 < r_{10} / f < 1.0$;

(3) $0.86 < n_3/n_4 < 0.96$; (4) $0.05 < f_2/f_1 < 0.15$, $f_1 < 0$.

r₆为第2组中胶合透镜的胶合面的曲率半径,与第3、第4块透镜胶合,构成凸透镜。

条件(1)为良好保持正弦条件。超过上限时,则正弦条件补正不足,超过下限时,则 补正过多。

条件(2)为良好保证球差的条件。超过上限时,则球差补正不足,超过下限时,则补 正过多。

条件(3)为良好保证轴外象差的条件。超过上限时,则补正不足,超过下限时,则补 正过多。

条件(4)为保持较大作用距离的条件。超过上限时,则后组的负担变大,各象差的补

• 51 •

正也困难;超过下限后,则作用距离变小,自动聚焦等作用的控制困难。

擒足上述条件后,如实际例子所示,可得NA最大(0.8~0.9),作用距离达1~1.5mm, 尺寸为9~10φ 长为17mm,重1g的物镜。

第1图为第一个实际例子。图中符号L₁, L₂, L₈, L₄, L₅, L₆为透镜, 符号G为保护 玻璃,符号D为光磁盘,符号L₄为光轴。透镜L₁、L₂构成第1组, 透镜L₅、L₄、L₅和L₆构成 第2组。图的左侧为物体一侧。

3

٤

符号。 $r_1 \sim r_{11}$ 为物镜各透镜的曲率半径; r_{12} , r_{13} 为保护玻璃G正反两面的曲率半径; $d_1 \sim d_{10}$ 为物镜的透镜面间的距离;符号 d_{12} 为保护玻璃的正反两面间距; d_{11} 为透镜 L_3 的象 侧透镜面与保护玻璃G正面之间在光轴 L_4 上的距离。

这些量的具体数值如下:

$r_1 = 3.555;$	$d_1 = 0.236;$	n ₁ =1.61388;	$v_1 = 60, 3$
r ₂ =5.708;	$d_2 = 0.296;$	$r_{3} = -1.610;$	$d_3 = 0.192;$
$n_2 = 1.78738_3$	$v_2 = 25.4$	$r_4 = -2.595;$	d ₄ =0.594;
$r_s = 3.070;$	$d_5 = 0.784;$	$n_s = 1.61597;$	$v_{s} = 56.9;$
$r_6 = -1.399;$	$d_6 = 0.219;$	$n_4 = 1.71357$;	$v_4 = 28, 3$
$r_7 = -7.824$;	$d_{7} = 0.031;$	$r_{s} = 1.799;$	$d_8 = 0.542$,
$n_s = 1.7628_s$	$v_{5} = 49.6;$	$r_9 = 7.466;$	d = 0.020;
$r_{10} = 0.858;$	$d_{10} = 0.518;$	$n_6 = 1.7628;$	$v_6 = 49.6$
$r_{11} = 1.853;$	$d_{11} = 0.274$;	$r_{12} = \infty_{j}$	$d_{12} = 0.271$;
$n_0 = 1.51;$	$r_{13} = \infty_{j}$	$f_1 = -10,377$	f ₂ =1.018
f = 1.000;	NA = 0.85.		

n₁~n₆为各透镜L₁~L_L的折射率; n₀为保护玻璃的折射率; ν₁~ν₆为各透镜的阿贝数。 第2图为第2个实例。L'₁~L'₆为透镜,其他符号的意义同第1图。本实例的具体数 值如下:

-							
$r_1 = 6.094;$	$d_1 = 0.2581$	$n_1 = 1.61388;$	$v_1 = 60.3;$				
r ₂ =13.535;	$d_2 = 0,252$	$r_{s} = -1.503;$	$d_{s} = 0.195;$				
n ₂ =1,78738;	$v_2 = 25.4$	$r_4 = -2.340;$	$d_4 = 0.613$;				
r ₅ =3.203,	d₅=0.781;	$n_s = 1.61597;$	$v_{3} = 56.9;$				
$r_6 = -1.422;$	$d_6 = 0.202_3$	$n_4 = 1,71357;$	$v_4 = 28.3$;				
$r_{2} = -5.671;$	$d_7 = 0.045;$	$r_8 = 1.742$	$d_8 = 0.518;$				
$n_{5} = 1.7628;$	$v_5 = 49.63$	r 9 = 3.592;	d ₉ = 0.065;				
r ₁₀ =0.891;	$d_{10} = 0.481;$	$n_{b} = 1.7628;$	$v_6 = 49.63$	`			
r ₁₁ =1.941;	$d_{11} = 0.308;$	$r_{12} = \infty_{j}$	$d_{12} = 0.275;$	n ₀ =1.51;			
r ₁₃ =∞;	$f_1 = -9.172;$	$f_2 = 1.044;$	f = 1.000;	NA = 0.8.			
第3图为第3个实例,符号 L_1 "=L ₆ "为透镜,其它符号的意义同第1图。							
$r_1 = -4.473;$	$d_1 = 0.238;$	$n_1 = 1.61388;$	$v_1 = 60.3;$				
$r_{s} = -3.159;$	$d_2 = 0.201;$	n ₂ =1.78738;	$v_2 = 25.4;$				
$r_{s} = -1.421;$	d,=0.211;	$r_4 = -2,053;$	$d_4 = 0.534;$				

• 52 •

$n_3 = 1.61597;$	$v_3 = 56.3;$	$r_{s} = 2.847;$	$d_{5} = 0.923;$	
$n_4 = 1.71357;$	$v_4 = 28.3$;	r ₆ =-1,492;	$d_{s} = 0.200;$	
$r_7 = -7.185;$	$d_7 = 0.025;$	$n_{b} = 1.7628;$	$v_{s} = 49.6;$	
$r_{s} = 1.953;$	$d_8 = 0.525;$	r,=6.539;	$d_9 = 0.026;$	
$r_{10} = 0.938;$	$d_{10} = 0.556$;	$n_6 = 1.7628;$	$v_6 = 49.6;$	
$r_{11} = 2.232;$	$d_{11} = 0,277;$	$r_{12} = \infty$;	$d_{12} = 0.275;$	$n_0 = 1.7628;$
$r_{13} = \infty$;	$f_1 = -11.313;$	$f_2 = 1.082;$	f=1.000;	NA = 0.9

第4图为第1实例的象差图,第5图为第2实例的象差图,第6图为第3实例 的 象 差 图。

第7图为第1实际例子的波象差等高线图。第8图为第2实例的波象差等高线图,第9 图为第3实例的波象差等高线图。在这些波象差图中,左方的图象高为h=0,即在光轴上, 右边的图是以入瞳位置的等高线图来表示边缘的波象差。

图面的简单说明

第1图表示本发明的第1实际例子,第2图表示本发明的第2实际例子,第3图表示本 发明的第3实际例子,第4图至第6图为象差图,第7图至第9图为波面象差的等高线图。 L₁,L₂……L₆……为透镜,G为保护玻璃,D为磁盘。

• 53 •

日本京都Takenaka设备公司研制成功用于塑料、金属薄片和未加工的编织材料探伤的小型激光设备。它由He-Ne激光振荡器和振动镜、光接受器部件和控制器构成。

为了产生扫描传送器皮带宽度的窄光束,利用这块镜子控制激光束的方向。该激光束被 传感器探测,而传感器由漫射板、光电倍增管和光接受器构成。调节镜的振动频率,就能检 查部件的整个表面。

为了扫描整个表面,以700Hz的频率、1mW的激光束横向扫描从10至200mm的宽度,该 宽度可由使用者调节。而控制部件把从光接受器转变来的信号电平和合格的电平相比较。

译自 L.O.I., 1987, Vol.4, No.3, P.1.

邹福清 译 刘建卿 校

• 54 •

ł