Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 42 Issue 5
Sep.  2018
Article Contents
Turn off MathJax

Citation:

Study on polarization mode dispersion suppression in optical transmission network based on optical circulators

  • Received Date: 2017-10-15
    Accepted Date: 2017-11-28
  • In order to reduce influence of polarization mode dispersion(PMD) on the quality of transmission signal, an optical circulator was applied in the front-end of the optical amplifier of the optical transmission network. The effect of PMD in optical transmission network was simulated. After PMD suppression, transmission eye diagram opened more obviously. Transmission performance of the system was improved to a certain extent.The PMD in the optical transmission network was suppressed to a certain extent, and the quality of signal was effectively improved. The results show that the bit error rate of PMD decreases about one time with and without the optical circulator. The optical circulator has a significant inhibitory effect on PMD in the optical transport network. The polarization delay at different transmission speeds is compensated equivalently with this scheme so that the PMD is compensated finally.
  • 加载中
  • [1]

    GUAN A H, SHUN J Q. Impact of OXC architecture on the accumulation of intraband crosstalk in WDM optical networks[J]. Laser Technology, 2006, 30(6):653-656(in Chinese).
    [2]

    ELMIRGHANI L N H, MOUFTAH H T. All-optical wavelength conversion:technologies and applications in DWDM networks[J]. IEEE Communications Magazine, 2000, 38(3):86-92. doi: 10.1109/35.825645
    [3]

    LAUDE J P. DWDM fundamentals, components, and applications[M].Norwood, MA, USA:Artech House, 2006:22-28.
    [4]

    ZHEN H L. Polarization filters based on high birefringence photonic crystal fiber filled with Au[J]. Laser Technology, 2016, 40(1):1-4(in Chinese).
    [5]

    GUAN A H, ZHANG Q H, FU H L. Experimental study of four-wave miring influence in WDM optical networks[J]. Laser Technology, 2009, 33(1):5-7(in Chinese).
    [6]

    CHOI I, ZHOU Y R, DYNES J F, et al. Field trial of a quantum secured 10Gb/s DWDM transmission system over a single installed fiber[J]. Optics Express, 2014, 22(19):23121-23128. doi: 10.1364/OE.22.023121
    [7]

    AN H Y, LIU D W, GENG R H, et al. Polarization control based on FPGA in quantum communication systems[J]. Systems Engineering and Electronics, 2016, 38(8):1917-1921(in Chinese).
    [8]

    ITO H, KODAMA S, MURAMOTO Y, et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4):709-727. doi: 10.1109/JSTQE.2004.833883
    [9]

    HUANG Y, HERITAGE J P, MUKHERJEE B. Connection provision-ing with transmission impairment consideration in optical WDM networks with high-speed channels[J]. Journal of Lightwave Technology, 2005, 23(3):982-993. doi: 10.1109/JLT.2005.843520
    [10]

    HODZIE A, KONRAD B, PETERMANN K. Alternative modulation formats in nx 40Gb/s WDM standard fiber RZ-transmission systems[J]. Journal of Lightwave Technology, 2002, 20(4):598-604. doi: 10.1109/50.996579
    [11]

    SUNNERUD H, XIE C, KARLSSON M, et al. A comparison between different PMD compensation techniques[J]. Journal of Lightwave Technology, 2002, 20(3):368-372. doi: 10.1109/50.988985
    [12]

    GRANT P D, LAFRAMBOISE S R, DUDEK R, et al. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2009, 45(18):952-954. doi: 10.1049/el.2009.1586
    [13]

    LEFRANCOIS S, FU D, HOLTOM G R, et al. Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2012, 37(10):1652-1654. doi: 10.1364/OL.37.001652
    [14]

    SHUN J H, MA T Y, WANG X B, et al. Experimental study on polarization shift compensation for single photon[J]. Acta Photonica Sinica, 2009, 38(3):528-531(in Chinese).
    [15]

    XU Zh G, JIANG L. Analysis of noise suppression in the channel of laser communication system[J]. Laser Journal, 2017, 38(8):197-199(in Chinese).
    [16]

    LUO J W, LI Y X, MENG W, et al. A quantum secure communication system based on wavelength -mode double multiplexing[J]. Acta Photonica Sinica, 2017, 37(9):927001(in Chinese).
    [17]

    JIANG L, WANG Ch, AN Y, et al. Analysis of transmission cha-racteristics of Kurdish type polarization laser communication terminal[J]. Laser & Optoelectronics Progress, 2016, 53(11):110603(in Chinese).
    [18]

    WANG Y, LI Y, MA J, et al. Study on the performance of coherent circular polarization modulation system in free space optical communication[J].Infrared and Laser Engineering, 2016, 45(8):822004(in Chinese). doi: 10.3788/IRLA
    [19]

    YANG Y F, YAN Ch X, HU Ch H, et al. Study of polarization aberration in optical system of coherent laser communication[J]. Acta Photonica Sinica, 2016, 36(11):1106003(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article views(8326) PDF downloads(86) Cited by()

Proportional views

Study on polarization mode dispersion suppression in optical transmission network based on optical circulators

  • 1. Mechanical and Electrical Engineering College, Institute of Yellow River Transport, Jiaozuo 454950, China
  • 2. Computer and Communication Engineering College, Institute of Zhengzhou Light Industry, Zhengzhou 450002, China

Abstract: In order to reduce influence of polarization mode dispersion(PMD) on the quality of transmission signal, an optical circulator was applied in the front-end of the optical amplifier of the optical transmission network. The effect of PMD in optical transmission network was simulated. After PMD suppression, transmission eye diagram opened more obviously. Transmission performance of the system was improved to a certain extent.The PMD in the optical transmission network was suppressed to a certain extent, and the quality of signal was effectively improved. The results show that the bit error rate of PMD decreases about one time with and without the optical circulator. The optical circulator has a significant inhibitory effect on PMD in the optical transport network. The polarization delay at different transmission speeds is compensated equivalently with this scheme so that the PMD is compensated finally.

引言
  • 光传送网(optical transmission networks, OTN)以密集波分复用(dense wavelength division multiplexing, DWDM)系统作为光传输层平台[1-7]。现阶段,该系统主要通过G.652光纤进行信息传输,在传输期间受到布里渊散射、四波混频等各类非线性效应的影响程度较低。但是采用光纤进行距离较长的传输时, 信号受到群速度色散以及偏振模色散(polarization mode dispersion, PMD)效应的影响程度将明显增加。上述各项效应会在DWDM系统的传输阶段中发生持续积累,使光信号的性能发生显著下降。因此,为了有效控制光信号性能的恶化程度,只有将传送网的链路距离控制在合理范围内。

    掺铒光放大器(erbium doped waveguide amplifiers, EDFA)是一种能够有效降低光纤信号在传输阶段衰减程度的部件。对于色度色散问题,可通过啁啾光纤布喇格光栅(chirped fiber Bragg grating, CFBG)对特定传输距离中发生的色散进行有效补偿,从而有效避免色度色散的问题[8-10]。对于偏振模色散问题,则可以通过电域补偿、光域补偿以及光电混合补偿方式得到有效解决[11-14]。对于偏振模色散光补偿过程,可以通过光可调延迟线对光信号传输期间的两个偏振态传输速率差异导致的时延进行补偿,通过增加速度较快偏振方向的光路距离来消除偏振模色散现象;光电混合补偿需使光信号首先从偏振分束器中经过,形成互相垂直的两个偏振方向, 再利用两个光电检测模块把上述两个不同的偏振方向信号都转变成电域信号, 再通过对射频时延线长度进行合理调节来消除偏振模的色散问题[15-17]

    通过以上分析可知,当前对于偏振模色散的抑制方法基本都是采取主动补偿的处理方式,需要设置复杂的光传输结构,在系统结构方面也存在较大的差异,因此需要对目前的光传送网进行系统改造,极大增加了经济成本[18-19]。为了更好地解决上述问题,本文中提出了以光环形器作为基础的色散抑制偏振模方案。该方案的设计思路是将光环形器置于光放大器的前端部位,使光信号偏振方向发生等效变化,从而对这两个具有不同传输速度的偏振态光信号延迟进行等效补偿,最终实现补偿偏振模色散的效果。

1.   原理
  • 基于DWDM光网络的光传送网方案如图 1所示。各类波长不同的激光二极管(laser diode, LD)光信号先从左侧密集波分复用器DWDM进入,再经光纤继续传输。在理想单模光纤条件下,这两个正交偏振模将具有相同的传播性能,不会产生偏振模色散现象。但在实际情况下,光纤传输系统中的单模光纤的纤芯因制备工艺条件限制并不能达到完全的理想圆对称状态,同时掺杂浓度也存在不均匀的分布现象,从而使光传输信号在不同的偏振方向上存在折射率差异。由于受偏振模色散作用,解复用器DWDM实际接收到的光信号将发生显著展宽,引起偏振模色散从而使光载波及其边带传输速率存在差异,随着系统中的偏振模色散程度不断增加,光信号性能也持续下降,从而严重影响到光传送网的整体通信能力。

    Figure 1.  Structure of optical transmission network communication system based on DWDM

    为了有效处理光传送网的光纤衰减问题,可以采取将掺铒光放大器加入到链路中的方法以增强光信号的功率,并在此基础上,将光环形器设置在EDFA的前部以形成偏振控制系统,该系统由一面反射镜与一个法拉第镜圆筒共同构成,并满足如下所示的琼斯矩阵[14]

    式中,r代表光信号的损耗系数。

    图 2显示了光环形器的传送网模型。各个具有不同波长的光信号从左侧密集波分复用器DWDM进入, 再经光纤完成传输过程。当光信号受到偏振模色散的作用后将进入到光环形器内,输出信号对应的偏振方向将转动π/2,这时原先具有较快速率的偏振光信号将进入较慢速率的偏振方向中,而原先速度较慢的偏振光信号将进入到较快速率的偏振方向中,以此降低了系统的展宽程度,减小偏振模色散引起的光传送网传输误比特率。

    Figure 2.  Model of optical transmission network communication system with optical circulator

2.   实验
  • 为了进一步分析光环形器的结构对通信偏振模色散所起到的抑制作用,利用光通信仿真分析软件VPI对其实施了半实物测试。通过对比分析接收端的误比特率来体现光功率衰减、偏振模色散以及群速度色散等多种因素所产生的光信号影响效果。当群速度色散与光功率衰减情况相同时,随着偏振模色散的增大,光通信误比特率也会随之增加。通过测试长度相等的偏振模色散光纤传输效果,对比了接收端误比特率(bit error rate, BER)情况,从而以间接方式完成了对光环形器结构所具有的抑制偏振模色散效果的测试过程。

    图 3是偏振模抑制仿真框图。首先,由激光器产生的光信号先通过马赫-曾德尔外调制器(Mach-Zehnder modulator, MZM)把射频(radio frequency, RF)信号转换为如图 4所示的光边带信号。这些调制得到的光信号等效于各个波长不同的光信号并进入到左侧密集波分复用器DWDM中。之后,把数据调制成光边带再通过高偏振模色散光纤中传输。对于接收端,则以光电二极管(photo-diode,PD)拍频方式获得射频信号,再通过下变频生成基带信号后传输至示波器中查看眼图,完成误码分析。

    Figure 3.  Simulation block diagram of polarization mode suppression

    Figure 4.  Optical signal with external modulation

    固定光载波的中心频率等于193.1THz,副载波频率等于30GHz,仿真间距是10km,数据传输速率是2.5Gbit/s,偏振模色散系数等于5ps/km1/2图 5显示了在10km偏振模光纤长度下补偿前后得到的传输眼图结果。根据图 5可知,当发送功率相同时,采用光环形器完成偏振模色散补偿处理后得到的眼图具有明显的张开状态,对解调信号起到良好的改善作用。

    Figure 5.  Comparison of 10km eye diagrams

    固定光载波的中心频率等于193.1THz,副载波频率等于30GHz,仿真间距是100km,数据传输速率是50Gbit/s,偏振模光纤PMD系数等于5ps/km1/2图 6显示了在100km偏振模光纤长度下补偿前后得到的传输眼图结果。根据图 6可知,经过补偿处理的传输眼图具有更加明显的张开状态。考虑到除了偏振模色散会对传输眼图与误比特率产生影响以外,当光线线路过长时,也会增加色度色散影响效果,因此在这种情况下, 对偏振模色散补偿后依然存在明显的误码现象。

    Figure 6.  Comparison of 100km eye diagrams

    图 7显示了补偿偏振模色散前后的误比特率R计算结果。从中可以发现,当发送功率相同时,利用光环形器对偏振模色散进行补偿时,也可以对通信系统误比特率起到较好的改善作用,偏振模光纤越长, 误比特率改善得越好,这与传输眼图结果一致。相对于没有添加光环形器,误比特率R的效率提高了约1倍。由此可见,光环形器对光传送网通信的偏振模色散现象具有显著的抑制效果。

    Figure 7.  Comparison of bit error rate R of transmission

3.   结论
  • 设计了一种基于光环形器与相结合的偏振模色散抑制方案,通过加入控制光信号的偏振方向,使得在速度较快的偏振方向的光信号进入速度较慢的偏振方向中传递,而在速度较慢的偏振方向的光信号进入速度较快的偏振方向中传递,实现了对偏振模色散的补偿,从而减小系统展宽大小,降低了偏振模色散对于光传送网传输的误比特率的影响。通过仿真可以看出,经过偏振模色散抑制后,系统的传输性能有一定的提高,有效抑制了光传送网通信中的偏振模色散。

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return