Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 41 Issue 2
Mar.  2017
Article Contents
Turn off MathJax

Citation:

Design of control system in electromagnetic interference environment of discharge excimer laser

  • Corresponding author: FANG Xiaodong, xdfang@aiofm.ac.cn
  • Received Date: 2016-01-22
    Accepted Date: 2016-03-04
  • In order to design an effective anti-interference control system in discharge electromagnetic interference environment with excimer laser, the method of all-fiber-interface design and high-precision analog signal transmission based on voltage frequency conversion were taken. After theoretical analysis and experimental verification, the data of space electromagnetic interference intensity of discharge excimer laser and voltage frequency conversion waveform were collected. The results show that, under the condition of the max electric field intensity within 14V/m and the max magnetic field intensity within 38A/m, the system of transmitting the analog signal works stably and reliably with error of less than 2.5%. The study is helpful for analyzing and designing stable and anti-interference excimer laser control system.
  • 加载中
  • [1]

    LIANG X, YOU L B, HUANG D W. Excimer gas charging system based on microprocessor[J]. Laser Journal, 2010, 31(1):32-33(in Chinese).
    [2]

    MA Y, YANG Ch J, DENG Z H, et al. Advances in vitiligo treatment by 308 nm excimer laser[J]. Acta Laser Biology Sinica, 2012, 21(4):294-298(in Chinese).
    [3]

    YU Y Sh, LIANG X, YOU L B, et al. Progress of excimer lasers technology[J]. Chinese Journal of Lasers, 2010, 37(9):2250-2270(in Chinese).
    [4]

    LIANG X, YOU L B, WANG T, et al. Excimer pulse energy stabilization realized by charging voltage realtime adjusting[J]. Chinese Journal of Lasers, 2010, 37(2):374-378(in Chinese). doi: 10.3788/JCL
    [5]

    ZHAO J M, GAO J, LIANG X, et al. Study on pulse charge power for a dual-chamber excimer laser[J]. Laser Technology, 2013, 37(1):97-100(in Chinese).
    [6]

    YOU L B, LIANG X, YU Y Sh, et al. esign and experimental study of all solid state pulse power module for excimer lasers[J]. High Power Laser and Particle Beams, 2009, 21(11):1750-1754(in Chinese).
    [7]

    MENG F J, GUO L H, YANG G L, et al. A suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2012, 21(4):294-298(in Chinese).
    [8]

    DENG G Q, ZHU Zh Q, HE L H. EMI and suppression methods in excimer laser system[J]. Optoelectronic Technology & Information, 2005, 18(3):24-26(in Chinese).
    [9]

    HE F, WANG Y F, LIU Y G, et al. Eapplication of LM331 in the A/D convert circuit[J]. Microcomputer Information, 2004, 20(11):116-117(in Chinese).
    [10]

    ZHANG J, HU X Ch. Research on anti-jamming technology in SCM application system[J]. Computer Measurement & Control, 2006, 14(3):412-414(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article views(5841) PDF downloads(472) Cited by()

Proportional views

Design of control system in electromagnetic interference environment of discharge excimer laser

    Corresponding author: FANG Xiaodong, xdfang@aiofm.ac.cn
  • 1. School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230029, China
  • 2. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China

Abstract: In order to design an effective anti-interference control system in discharge electromagnetic interference environment with excimer laser, the method of all-fiber-interface design and high-precision analog signal transmission based on voltage frequency conversion were taken. After theoretical analysis and experimental verification, the data of space electromagnetic interference intensity of discharge excimer laser and voltage frequency conversion waveform were collected. The results show that, under the condition of the max electric field intensity within 14V/m and the max magnetic field intensity within 38A/m, the system of transmitting the analog signal works stably and reliably with error of less than 2.5%. The study is helpful for analyzing and designing stable and anti-interference excimer laser control system.

引言
  • 准分子激光具有紫外波段可实现激光大能量、高功率输出的特点,已经在工业、医疗和科学研究领域得到了广泛应用[1-3]。准分子激光器是通过气体放电产生激励实现激光输出的,放电高压一般在15kV~30kV,放电电流峰值一般在10kA~20kA,放电时间几十个纳秒[4-5],其电磁干扰强度较大,频谱覆盖了工频到射频的整个范围,会通过空间耦合、地线串扰等方式对准分子激光系统自身的稳定可靠运行造成干扰[6]。因此,准分子激光系统的抗干扰设计一直是影响其使用和性能的难点之一。

    本文中针对放电准分子激光系统的电磁干扰环境进行了控制系统的设计,首先测量干扰强度和分析放电干扰源状况,其次硬件上采用隔离光纤传输数字量,并结合压频-频压转换来进行高精度模拟量传输,最终优化控制系统程序结构,实现了放电干扰环境下稳定可靠的控制系统设计。

1.   放电准分子激光器工作原理及其干扰测量
  • 放电激励准分子激光的工作原理可以概括如下:首先储能电容被直流高压模块充电,当高压开关闭合时,储能电容的电量发生瞬间的转移,在回路中形成极强的电流,在大约100ns~200ns的时间内完成电量转移,电流峰值约20kA; 当电极两端的电压上升到临界值时,准分子激光工作气体被击穿放电,形成脉宽约30ns~50ns、峰值约50kA~70kA的放电电流,最终形成准分子激光[7-8]

    将电场探头置于激光器附近,在激光器工作时测得其空间电场波形如图 1所示。峰值电场强度可达14.3V/m,在-100ns~600ns时间范围内产生均值约5.7V/m的电场干扰。将磁场探头置于激光器附近,在激光器工作时测得其空间磁场波形如图 2所示。峰值磁场强度可达38.8A/m,磁场波动持续近700ns。

    Figure 1.  Interference of electric field

    Figure 2.  Interference of magnetic field

2.   放电准分子激光器控制系统在硬件上的抗干扰方法
  • 由于放电激励准分子激光的强电磁干扰,控制系统中控制、反馈等信号的传递是首先要解决的难点。原因在于:(1)数字、模拟等信号在传输过程中会受到电磁干扰而发生变形、产生杂波等,影响工作逻辑和信号精度;(2)通过信号线耦合的串扰等会造成逻辑器件的误动作,甚至造成单片机等控制芯片复位重启等。因此,控制系统主要采用光纤器件通讯进行数字量的传递和采用压频-频压转换的方式进行模拟量的传递。

  • 放电准分子激光器系统由中央控制模块、气路检测模块、能量检测模块、触发模块、液晶屏控制模块、高压逆变模块等组成,需要传递的数字量较多,所以首先要解决数字信号的可靠传输。系统采用光纤进行信号的传输(如图 3所示),其主要优点是单向传输信号;输入和输出完全实现了电气隔离;可以有效地抑制电磁干扰信号。

    Figure 3.  Communication by optical fiber

  • 数字信号的噪声容限较大,常见的晶体管-晶体管逻辑(transistor-transistor logic, TTL)电平噪声容限为0.4V,而模拟信号对于噪声的容忍度低,细微的电平抖动就能够对测量结果造成较大的影响,严重影响系统的控制精度等,因此在较强的电磁干扰环境下传输模拟信号,可先将模拟信号转化为数字信号再通过数字信号传输的方法实现信号传递[9]

    系统采用如图 4所示的方式进行模拟量隔离传输,首先将模拟量转换为频率信号,然后通过光纤器件发送到接收模块,接收模块将光信号转换为频率信号,再经过频压转换模块将其转化为模拟量。压频转换的波形如图 5所示。当输入电压幅值达到3V时,输出频率信号约为3.6kHz。实验结果表明,终端接收到的信号与原始信号相比,延时约在10ms,当达到峰值3V时,幅度偏移约70mV,误差小于2.5%。

    Figure 4.  Schematic diagram of voltage/frequency and frequency/voltage converter

    Figure 5.  Oscillogram of voltage/frequency converter(C1—voltage signal; C2—frequency signal)

3.   程序结构优化设计
  • 在硬件设计合理且工作正常的基础上,结合优化的程序结构能够提升系统可靠性。优化的程序结构可以保证在单片机工作出错后,系统能够采取相应的应急措施,依然可以安全运行。系统采用的软件抑制干扰措施主要包括:指令冗余、设置软件陷阱、定时刷新寄存器、输入/输出(input/output, I/O)映射技术等[10],程序结构框图如图 6所示。

    Figure 6.  Diagram of program structure

4.   结论
  • 实验结果表明,在放电激励准分子激光电磁干扰环境下,最强电场干扰为14V/m,最强磁场干扰为38A/m,本文中设计的控制系统能够准确传输数字信号,实现交互控制和内部通讯;传输峰值3V的模拟信号,精度约在2%,延时约10ms,满足激光器各项检测传感器模拟信号的传输使用要求;微控制单元稳定运行,能够及时处理突发状况。实现了放电激励准分子激光器电磁干扰环境下的稳定可靠控制系统设计。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return