Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 40 Issue 3
Mar.  2016
Article Contents
Turn off MathJax

Citation:

Research of hot wire chemical vapor deposition and micro-structure of a-SiNx:H thin film

  • Corresponding author: ZHOU Bingqing, zhoubq@imnu.edu.cn
  • Received Date: 2015-03-26
    Accepted Date: 2015-05-11
  • In order to study the effect of hot wire temperature on the properties of a-SiNx:H thin films, by using hot wire chemical vapor deposition method and using SiH4, NH3, H2 as reaction gas source, a-SiNx:H films were deposited by changing the temperature of hot wire. Film luminescent properties, microstructure and bonding characteristics were gotten and analyzed in detail by means of measurement methods such as ultraviolet-visible optical absorption spectroscopy, Fourier transform infrared transmission spectroscopy, and photoluminescence spectrum. The results show that, when wire temperature is at 1645℃, H content reaches greatest, N content is extremely small, film has high refractive index and a large degree of order. When the wire temperature is at 1713℃, H content decreases, N content reaches extremes. And then, with the increase of hot wire temperature, N content decreases and internal defect intensity increases. The results show that the best value of hot filament temperature is between 1596℃ to 1680℃ and the refractive index of film is 2.0. The film, with full nitrogen and hydrogen contents and stable structure and characteristics, is suit to choose as silicon-based solar cell antireflection film.
  • 加载中
  • [1]

    YU W, MENG L H, GENG Ch L, et al. Structural properties of hydrogenated amorphous silicon nitride films deposited by facing targets sputtering[J]. Chinese Science Bulletin, 2010, 55(18):1799-1804(in Chinese).
    [2]

    WANG Y, SHEN D Zh, ZHANG J Y, et al. Influence of thermal annealing on the structural and optical properties of Si-rich silicon nitride films[J]. Chinese Journal of Liquid Crystals and Displays, 2005, 20(1):18-21(in Chinese).
    [3]

    LIU F Zh, SCOTT W, LYNN G, et al. Amorphous silicon nitride deposited by hot-wire chemical vapor deposition[J]. Journal of Applied Physics, 2004, 96(5):2973-2979.
    [4]

    LIAO W G, ZENG X B, WEN G Zh, et al. Photoluminescences and structure performances of Si-rich silicon nitride thin films containing Si quantum dots[J]. Acta Physica Sinica, 2013, 62(12):126801-126805(in Chinese).
    [5]

    DUERINCKX F, SZLUFCIK J. Defect passivation of industrial multi-crystalline solar cells based on PECVD silicon nitride[J]. Solar Energy Mater Solar Cells, 2002, 72(1):231-246.
    [6]

    PALOURA E, NAUKA K, LAGOWSKI J. Silicon nitride films grown on silicon below 300℃ in low power nitrogen plasma[J]. Applied Physics Letters, 1986, 49(2):97-99.
    [7]

    LUO Z, LIN X Y, YU C Y, et al. Infrared analysis on hydrogen content and Si-H bonding configurations of hydrogenated amorphous silicon films[J]. Acta Physica Sinica,2003,52(1):169-174(in Chinese).
    [8]

    LANFORD W A, RAND M J. The hydrogen content of plasma-deposited silicon nitride[J]. Journal of Applied Physics, 1978, 49(4):2473-2477.
    [9]

    MOLINARI M, RINNERT H, VERGNAT M. Improvement of the photoluminescence properties in a-SiNx films by introduction of hydrogen[J]. Applied Physics Letters, 2001, 79(14):2172-2174.
    [10]

    WANG M H, LI D Sh, YUAN Zh Zh. Photoluminescence of Si-rich silicon nitride:defect-related states and silicon nanoclusters[J]. Applied Physics Letters, 2007, 90(13):131901-131903.
    [11]

    LI T, JERZY K, KONG W, et al. Interference fringe-free transmission spectroscopy of amorphous thin films[J]. Journal of Applied Physics, 2000, 88(10):5764-5771.
    [12]

    YU W, HOU H H, WANG B Zh, et al. Microstrueture and optical properties of hydrogenated amorphous silicon nitride films[J]. Journal of Hebei University, 2003, 23(3):253-256(in Chinese).
    [13]

    MAITINEZ F L, del PRADO A, MATIL I, et al. Thermally induced changes in the optical properties of SiNx:H films deposited by the electron cyclotron resonance plasma method[J]. Journal of Applied Physics, 1999, 86(4):2055-2061.
    [14]

    SUN K F, LI Z Q, LI X. Influence of substrate temperature on SiN thin film deposited by RF magnetron reaction sputtering[J]. Process Technique and Materials, 2007,32(6):516-519(in Chinese).
    [15]

    LIAO W G, ZENG X B, WEN G Zh, et al. Photoluminescences and structure performances of Si-rich silicon nitride thin films containing Si quantum dot[J]. Acta Physica Sinica, 2013, 62(12):126801-126805(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(5251) PDF downloads(276) Cited by()

Proportional views

Research of hot wire chemical vapor deposition and micro-structure of a-SiNx:H thin film

    Corresponding author: ZHOU Bingqing, zhoubq@imnu.edu.cn
  • 1. Key Laboratory of Physics and Chemistry for Functional Material, College of Physics and Electron Information, Inner Mongolia Normal University, Huhhot 010022, China

Abstract: In order to study the effect of hot wire temperature on the properties of a-SiNx:H thin films, by using hot wire chemical vapor deposition method and using SiH4, NH3, H2 as reaction gas source, a-SiNx:H films were deposited by changing the temperature of hot wire. Film luminescent properties, microstructure and bonding characteristics were gotten and analyzed in detail by means of measurement methods such as ultraviolet-visible optical absorption spectroscopy, Fourier transform infrared transmission spectroscopy, and photoluminescence spectrum. The results show that, when wire temperature is at 1645℃, H content reaches greatest, N content is extremely small, film has high refractive index and a large degree of order. When the wire temperature is at 1713℃, H content decreases, N content reaches extremes. And then, with the increase of hot wire temperature, N content decreases and internal defect intensity increases. The results show that the best value of hot filament temperature is between 1596℃ to 1680℃ and the refractive index of film is 2.0. The film, with full nitrogen and hydrogen contents and stable structure and characteristics, is suit to choose as silicon-based solar cell antireflection film.

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return