Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 40 Issue 2
Dec.  2015
Article Contents
Turn off MathJax

Citation:

Study on stochastic resonance gas weak signal detection

  • Received Date: 2014-12-14
    Accepted Date: 2015-01-12
  • In order to detect the gas signals in complex environments of coal mine and solve the problem of the buried weal signal and the abnormal data because of surrounding noise interference on gas signal, a detection method for weak gas signal was introduced based on stochastic resonance. Sub-sampling method was used to transform large frequency signal scale and particle swarm optimization algorithm was used to optimize structural parameters. The resonance effect of large-parameter weak signal in a stochastic resonance system was analyzed. The results show that optimum matching between the nonlinear system, the input signal and the noise could be achieved adaptively with lower sampling frequency. The large-parameter multi-frequency weak signal can be distinguished from strong background noise effectively, and the detection sensitivity and dynamic range are enhanced. The research provides theory basic for early identification of gas outburst information.
  • 加载中
  • [1]

    FU H, XIE S, XU Y S. Study on MPSO-WLS-SVM-based mine gas emission prediction model[J]. China Safety Science Journal, 2013, 23(5):56-61(in Chinese).
    [2]

    FU H, JIANG W, SHAN X X. Study on coupling algorithm on coal mine gas emission forecast model[J]. Journal of China Coal Society, 2012, 37(4):654-658(in Chinese).
    [3]

    DENG M, ZHANG G Sh, CHEN Q H. Forecast of coal and gas outburst based on time series of gas concentration[J]. Journal of China Coal Society, 2010, 35(2):260-263(in Chinese).
    [4]

    DONG D W, LIU J, WANG H G. An adaptive method for predicting coal mine gas concentration and its application pre-warning[J]. China Safety Science Journal, 2013, 23(5):88-93(in Chinese).
    [5]

    LEI Y G, HAN D, LIN J, et al. New adaptive stochastic resonance method and its application to fault diagnosis[J]. Journal of Mechanical Engineering, 2012, 48(7):62-67(in Chinese).
    [6]

    HAN D Y, DING X J, SHI P M. Multi-frequency weak signal detection based on EMD after de-noising by adaptive re-scaling frequency-shifted band-pass stochastic resonance[J]. Journal of Mechanical Engineering, 2013, 49(8):10-18(in Chinese).
    [7]

    FAUVE S, HESLOT F. Stochastic resonance in a bistable system[J]. Physics Letters, 1983, A97(1):5-7.
    [8]

    ZHU G Q, DING K, ZHANG Y, et al. Experimental research of weak signal detection based on the stochastic resonance of nonlinear system[J]. Acta Physica Sinica, 2010, 59(5):3001-3006(in Chin-ese).
    [9]

    LENG Y G, WANG T Y. Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy noise[J]. Acta Physica Sinica, 2003, 52(10):2432-2437(in Chinese).
    [10]

    HU J X, ZENG J Ch. Selection on inertia weight of particle swarm optimization[J]. Computer Engineering, 2007, 33(11):193-195(in Chinese).
    [11]

    YANG D X, HU Zh, YANG Y M. The analysis of stochastic resonance of periodic signal with large parameters[J]. Acta Physica Sinica, 2012, 61(8):1-10(in Chinese).
    [12]

    LIANG Zh J, WANG K F, GU G Q, et al. Digital speckle image correlation method base of particle swarm optimization algorithm[J]. Laser Technology, 2014, 38(5):603-607(in Chinese).
    [13]

    LI R Q, SHI Sh L, NIAN Q F, et al. Research on pattern recognition of gas explosion disaster risk in coal mines based on PSO-SVM[J]. China Safety Science Journal, 2013, 23(5):38-43(in Chinese).
    [14]

    WAGDY M F, LUCAS M S P.A phase-measurement offset compensation technique suitable for automation[J]. IEEE Transaction on Instrumentation and Measurement, 1987, 36(3):721-724.
    [15]

    OSTRANDER L E, PALOSKI W H, BARIE P S, et al. A computer algorithm to calculate P50 from a single blood sample[J]. IEEE Transactions on Biomedical Engineering, 1983, 30(4):250-254.
    [16]

    YANG Sh L, SU Y B, HE J T, et al. Study of measurement accuracy of position sensitive detectors[J]. Laser Technology, 2014, 38(6):830-834(in Chinese).
    [17]

    NICOLI J A G. Multi-periodical phase meter:US, 4157500[P].1979-07-05.
    [18]

    FERNANDEZ-MARTINEZ J L, GARCIA-GONZALO E. Stochastic stability analysis of the linear continuous and discrete PSO models[J]. IEEE Transactions on Evolutionary Computation, 2010, 15(3):405-423.
    [19]

    SHI Y, JU A S, LE Y F. Heterodyne interference signal processing method based on FPGA[J]. Laser Technology, 2012, 36(2):221-224(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(5627) PDF downloads(246) Cited by()

Proportional views

Study on stochastic resonance gas weak signal detection

  • 1. Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China;
  • 2. College of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
  • 3. Graduate School, Liaoning Technical University, Fuxin 123000, China

Abstract: In order to detect the gas signals in complex environments of coal mine and solve the problem of the buried weal signal and the abnormal data because of surrounding noise interference on gas signal, a detection method for weak gas signal was introduced based on stochastic resonance. Sub-sampling method was used to transform large frequency signal scale and particle swarm optimization algorithm was used to optimize structural parameters. The resonance effect of large-parameter weak signal in a stochastic resonance system was analyzed. The results show that optimum matching between the nonlinear system, the input signal and the noise could be achieved adaptively with lower sampling frequency. The large-parameter multi-frequency weak signal can be distinguished from strong background noise effectively, and the detection sensitivity and dynamic range are enhanced. The research provides theory basic for early identification of gas outburst information.

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return