Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 39 Issue 1
Nov.  2014
Article Contents
Turn off MathJax

Citation:

Diffraction characteristics of longitudinal chirped volume grating based on transfer matrix algorithm

  • Corresponding author: WANG Yuefeng, wyfmail@sina.com
  • Received Date: 2014-01-03
    Accepted Date: 2014-01-20
  • In order to study diffraction characteristics of longitudinal chirped volume Bragg gratings, transfer matrix algorithm was used. Effects of the thickness, refractive index modulation and chirped wavelength range on the central diffraction efficiency of the longitudinal chirped volume Bragg gratings were calculated. The results show that central diffraction efficiency increases with the increase of the thickness and the refractive index modulation of the Bragg grating. However, with the increase of the chirped wavelength range, the central diffraction efficiency decreases. The research results have certain reference value for design and manufacture of large size of chirped volume Bragg gratings.
  • 加载中
  • [1]

    WANG J Z, WANG Y F, BAI H J. Study on multi-channel spectral beam combined characteristics based on volume Bragg gratings[J]. Laser Technology, 2012, 36(5):593-596(in Chinese).
    [2]

    LIU B, LI J. Study about spectral beam combining with volume Bragg grating by means of Gaussian apodization technique[J]. Laser Technology, 2013, 37(5):656-659(in Chinese).
    [3]

    PABOEUF D, VIJAYAKUMAR D, JENSEN O B, et al. Volume Bragg grating external cavities for the passive phase locking of high brightness diode laser arrays: theoretical and experimental study[J]. Journal of the Optical Society of America, 2011, B28(5):1289-1299.
    [4]

    VENUS G B, SEVIAN A, SMIRNOV V I, et al. High brightness narrow line laser diode source with volume Bragg grating feedback[J]. SPIE, 2005, 5711:166-176.
    [5]

    GALVANAUSKAS A, HEANEY A, ERDOGAN T, et al. Use of volume chirped Bragg grating for compact high-energy chirped pulse amplification circuits[J].Lasers and Electro-optics, 1998, 6(3):362.
    [6]

    GLEBOV L B, GLEBOVAL L N, SMIRNOV V I, et al. Laser damage resistance of photo-thermo-refractive glass Bragg gratings[J]. Proceedings of Solid State and Diode Lasers Technical Review, 2004, 15(6):3-6.
    [7]

    LIAO K H, CHENG M Y, FLECHER E, et al. Large-aperture chirped volume Bragg grating based fiber CAP system[J]. Optics Express, 2007, 15(8):4876-4882.
    [8]

    CHANG G Q, LIU Ch H, LIAO K H, et al. 50W chirped volume Bragg grating based fiber CPA at 1055nm[C]//Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. Baltimore,New York,USA:IEEE, 2007:1-2.
    [9]

    CHANG G Q, REVER M, SMIRNOV V, et al. 32W femtosecond Yb-fiber CPA system based on chirped volume Bragg gratings[C]//Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. Baltimore,New York,USA:IEEE, 2008:1-2.
    [10]

    GLEBOV L B, MOKHOV S V, SMIRNOV V I, et al. Analytic theory of light reflection from a chirped volume Bragg grating[C]//Novel Optical Architectures in Emerging Technologies Ⅱ. San Jose,USA: Frontiers in Optics, 2009:5.
    [11]

    BELAI O V, PODIVILOV E V, SHAPIRO D A. Group delay in Bragg grating with linear chirp[J]. Optics Communications, 2006, 266(2):512-520.
    [12]

    GLEBOV L B, LUMEAU J, MOKHOV S, et al. Reflection of light by composite volume holograms: Fresnel corrections and Fabry-Perot spectral filtering[J]. Journal of the Optical Society of America, 2008, 25(3):751-764.
    [13]

    MOHARAM M G, GAYLORD T K. Chain-matrix ayalysis of arbitrary-thickness dielectric reflection gratings[J]. Journal of the Optical Society of America, 1982, 72(2):187-190.
    [14]

    SHARLANDJIEV P, MATEEVA T. Normal incidence holographic mirrors by the characteristic matrix method: numerical examples[J]. Journal of Optics, 1985, 16(4): 185-189.
    [15]

    FENG J S, YUAN X, ZHANG X, et al. Simulation of chirped volume Bragg grating with a partition integration method[C]//Progress In Electromagnetics Research Symposium Proceedings. Suzhou, China: Soochow University, 2011:1295-1298.
    [16]

    KOGELNIK H. Coupled wave theory for thick hologram gratings[J]. The Bell System Technical Journal, 1969, 48(9) :2909-2947.
    [17]

    MOHARAM M G, GAYLORD T K. Rigorous coupled wave analysis of planar grating diffraction[J]. Journal of the Optical Society of America, 1981, 17(7):811-818.
    [18]

    McCARTNEY D J. The analysis of volume reflection gratings using optical thin-film techniques[J]. Optical and Quantum Electronics, 1989, 21(2):98-107.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3022) PDF downloads(377) Cited by()

Proportional views

Diffraction characteristics of longitudinal chirped volume grating based on transfer matrix algorithm

    Corresponding author: WANG Yuefeng, wyfmail@sina.com
  • 1. Electrics & Optics Engineering Department, Ordnance Engineering College, Shijiazhuang 050003, China

Abstract: In order to study diffraction characteristics of longitudinal chirped volume Bragg gratings, transfer matrix algorithm was used. Effects of the thickness, refractive index modulation and chirped wavelength range on the central diffraction efficiency of the longitudinal chirped volume Bragg gratings were calculated. The results show that central diffraction efficiency increases with the increase of the thickness and the refractive index modulation of the Bragg grating. However, with the increase of the chirped wavelength range, the central diffraction efficiency decreases. The research results have certain reference value for design and manufacture of large size of chirped volume Bragg gratings.

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return