[1] QIAO J N, LU J X, WU S K. Fatigue cracking characteristics of fiber laser-VPTIG hybrid butt welded 7N01P-T4 aluminum alloy[J]. International Journal of Fatigue, 2017, 98: 32-40. doi: 10.1016/j.ijfatigue.2017.01.008
[2] QIN C, GOU G Q, CHE X L, et al. Effect of composition on tensile properties and fracture toughness of Al-Zn-Mg alloy (A7N01S-T5) used in high speed trains[J]. Materials & Design, 2016, 91: 278-285.
[3] WANG Y, ZHANG Zh Y, GUO W, et al. Effects on fatigue properties of A7N01-T5 aluminum alloy welded joints for high-speed train by using different evaluation methods[J]. Electric Welding Machine, 2018, 48(3): 171-175(in Chinese).
[4] LI B, WU M N, JIN W T, et al. Corrosion behavior of weld joints of aluminum alloy A7N01P-T4 for high-speed trains[J]. Corrosion Science and Protection Technology, 2014, 26(3): 223-227(in Chin-ese).
[5] CHEN D F, ZHANG T H, ZHANG F D, et al. Corrosion behavior of weld joints of aluminum alloy A7N01P-T4 for high-speed trains[J]. Welding Technology, 2015, 44(3): 74-76(in Chinese).
[6] NI W Y, YANG Sh L, JIA J, et al. Microstructure and performance of A7N01 Al alloy welding joint used in automotive high-strength[J]. Hot Working Technology, 2014, 43(19): 22-25(in Chinese).
[7] GAO B J, JI H, FAN Y J, et al. Effect of microstructure and mechanical properties of welded joint of 7N01 alloy by pulse MIG welding[J]. Hot Working Technology, 2012, 41(15): 138-140(in Ch-inese).
[8] WANG Y L, CHEN H. Development trend of Al alloy on high speed train[J]. Electric Welding Machine, 2010, 40(10): 9-16(in Ch-inese).
[9] MA Zh H, CHEN D G, TAN B, et al. Influence of hybrid CO2 laser-MIG welding process on weld shaping of 5052 aluminum alloy[J]. Ordnance Material Science and Engineering, 2012, 35(2): 76-80(in Chinese).
[10] DAN L, MA J, YANG Zh. Research on welding of high strength aluminum alloy[J]. China Metal Bulletin, 2019(1): 241-243(in Chinese).
[11] YANG Z Y. Research status and development direction of high strength aluminum alloy and its advanced welding technologies[J]. Electric Welding Machine, 2018, 48(3): 255-259(in Chinese).
[12] WANG Q, HUI C, ZHU Z, et al. Mechanical properties of a dissimilar aluminum alloy joint welded by hybrid laser-MIG welding[J]. International Journal of Modern Physics, 2017, 31(16/19):1744037 (in Chinese).
[13] YAN Sh H, NIE Y, ZHU Z T, et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints[J]. Applied Surface Science, 2014, 298(15): 12-18.
[14] KATAYAMA S, KAWAHITO Y, MIZUTANI M. Latest process inperformance and understanding of laser welding[J]. Physics Procedia, 2012, 39: 8-16. doi: 10.1016/j.phpro.2012.10.008
[15] RONG C, PING J, SHAO X, et al. Effect of magnetic field on crystallographic orientation for stainless steel 316L laser-MIG hybrid welds and its strengthening mechanism on fatigue resistance[J]. International Journal of Fatigue, 2018, 112: 308-317. doi: 10.1016/j.ijfatigue.2018.03.034
[16] CHEN Y B, MIAO Y G, LI L Q, et al. Joint performance of laser-TIG double-side welded 5A06 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1): 1-31. doi: 10.1016/S1003-6326(08)60220-4
[17] ZHANG W, YE B, QI X Y, et al. Study on the effect of energy ratio in laser-MIG hybrid welding of 6061 aluminium alloy[J]. Laser Technology, 2018, 42(4): 500-504(in Chinese).
[18] CAI C, HE S, CHEN H, et al. The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy[J]. Optics and Laser Technology, 2019, 113: 37-45. doi: 10.1016/j.optlastec.2018.12.011
[19] CHANG Y F, LEI Zh, WANG X Y, et al. Stability of laser-MIG hybrid welding process with filling wire for aluminum alloy[J]. Transactions of The China Welding Institution, 2018, 39(10): 123-127(in Chinese).
[20] WANG H Y, SUN J, LIU L M. Formation and controlling mechanism of pores in laser-TIG hybrid welding of 6061-T6 aluminum alloy sat high peed[J]. Chinese Journal of Lasers, 2018, 45(3): 302001 (in Chinese). doi: 10.3788/CJL201845.0302001