[1] ZHANG L B, KANG L, CHEN J, et al. Development of superconductor single-photon detector[J]. Electronic and Electro-optical Systems, 2010(4): 1-5(in Chinese).
[2] YOU L X. Status and prospect of superconducting nanowire single photon detection[J]. Infrared and Laser Engineering, 2018, 47(12): 1202001(in Chinese). doi: 10.3788/IRLA201847.1202001
[3] ALLMAN M S, VERMA V B, HORANSKY R, et al. Progress towards a near IR single-photon superconducting nanowire camera for free-space imaging of light[C]//CLEO: Applications and Technology. Piscataway, NJ, USA: IEEE, 2014: 1-2.
[4] YAMASHITA T, LIU D, MIKI S, et al. Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector[J]. Optics Express, 2014, 22(23): 28783-28789. doi: 10.1364/OE.22.028783
[5] LI H, CHEN S, YOU L, et al. Superconducting nanowire single photon detector at 532nm and demonstration in satellite laser ranging[J]. Optics Express, 2016, 24(4): 3535-3542. doi: 10.1364/OE.24.003535
[6] EISAMAN M D, FAN J, MIGDALL A, et al. Invited review article: Single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7): 071101. doi: 10.1063/1.3610677
[7] NIWA K, NUMATA T, HATTORI K, et al. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry[J]. Scientific Reports, 2017, 7: 45660. doi: 10.1038/srep45660
[8] SUN W, XIA Ch X, LI J, et al. Research on the influence of cold shield on the cooling process of infrared detector assembly[J]. Laser & Infrared, 2017, 47(10): 1286-1289(in Chinese).
[9] LU J T, ZHANG X Y, LI Y H. Test and analysis of average BRDF in different blackening processes of cold shield[J]. Laser & Infrared, 2016, 46(2): 196-199(in Chinese).
[10] LIU D K. Eletrical characteristics and large active-area research of superconducting nanowire single-photon detector[D]. Shanghai: University of Chinese Academy of Sciences, 2014: 34-36(in Chin-ese).
[11] HU X L, XU L, ZOU K, et al. A superconductor nanowire single-photon detection system in the mid-infrared band: China, 201910888886.0[P]. 2020-01-17(in Chinese).
[12] XIE X M, XU Q, CHEN J, et al. Research progress on antimonide based type Ⅱ superlattice mid- and long-infrared detectors[J]. Laser Technology, 2020, 44(6): 688-694(in Chinese).
[13] SHI M L, LING L. Status and development trends of the HgCdTe large infrared focal array technology[J]. Journal of Ordnance Equipment Engineering, 2017, 37(11): 916-920(in Chinese).
[14] GOPAL V, DHAR V. Cold radiation shield design for a linear detector array[J]. Infrared Physics, 1986, 26(2): 83-87. doi: 10.1016/0020-0891(86)90025-4
[15] YE H F, YANG H M, WANG T J, et al. Anti-radiation screen assembly for cryogenic refrigerator: China, 201020155002.5[P]. 2010-11-24(in Chinese).
[16] YIN Sh, ZHU Y F, HUANG Y B, et al. The stray radiation su-ppression of the baffles of infrared focal plane dewar[J]. Infrared Technology, 2015, 37(11): 916-920(in Chinese).
[17] CHANG K, CHEN Sh Zh, WANG H, et al. Anti-radiation structure for low-temperature container: China, 201410172026[P]. 2016-03-30(in Chinese).
[18] JIN N, YANG K Y, CAO L, et al. Optimization design for the shapes of cold shield in infrared systems[J]. Acta Optica Sinica, 2016, 36(1): 0111005(in Chinese). doi: 10.3788/AOS201636.0111005
[19] WANG Zh L, LI P Y, ZHANG Y T, et al. Circulating cooling radiation shield: China, 201720307684.9[P]. 2017-10-20(in Chin-ese).
[20] GONG J. Design method of large dimension cold shield based on G-M cryocooler[J]. Journal of Aerospace Power, 2019, 34(2): 341-347(in Chinese).
[21] AI J, LI Z G, POPOV A K. Gas drift induced by laser-produced plasma radiation[J]. Laser Technology, 1992, 16(5): 257-261(in Chinese).
[22] RANGANATH G S. Black-body radiation[J]. Resonance, 2008, 13(2): 115-133. doi: 10.1007/s12045-008-0028-7