[1] MO M Z, TAN Y, CAO B, et al. Fracture analysis on the faucet valve of HPb59-1[J]. Applied Mechanics and Materials, 2013, 401:163-166.
[2] LEI I L, NG D Q, SABLE S S, et al. Evaluation of lead release potential of new premise plumbing materials[J]. Environmental Science and Pollution Research, 2018, 25(28):27971-27981. doi: 10.1007/s11356-018-2816-2
[3] ELFLAND C, SCARDINA P, EDWARDS M. Lead-contaminated water from brass plumbing devices in new buildings[J]. Journal American Water Works Association, 2010, 102(11):66-76. doi: 10.1002/j.1551-8833.2010.tb11340.x
[4] DUDI A, SCHOCK M, MURRAY N, et al. Lead leaching from inline brass devices: A critical evaluation of the existing standard[J]. Journal American Water Works Association, 2005, 97(8):66-78. doi: 10.1002/j.1551-8833.2005.tb07451.x
[5] ZHANG J H, CHEN Y, XU B, et al. Effect of surface texture on wear reduction of the tilting cylinder and the valve plate for a high-speed electro-hydrostatic actuator pump[J]. Wear, 2018, 414:68-78.
[6] ZHANG T, LIU H X, KANG C, et al. Ultrasonic cavitation erosion behavior and mechanism of Pb-brass alloy in different liquids[J]. Surface Technology, 2018, 47(1):109-115(in Chinese).
[7] QIAO J Zh, TIAN B H, SONG K X, et al. Erosion behavior of nickel-aluminium bronze alloy with Ti addition under artificial sea water environment[J]. Heat Treatment of Metals, 2018, 43(5) :55-59(in Chinese).
[8] LI Z Y, WANG Q Q, CUI Q W, et al. Optimization of nickel-tungsten carbide composite plating process and corrosion resistance of coating[J]. Electropating & Finishing, 2017(5):4-7(in Chinese).
[9] QIU X W, LIU C G, ZHANG Y P. Microstructure and property of Al2CoCrCuFeNixTi high entropy alloy coatings prepared by laser cladding[J]. Laser & Optoelectronics Progress, 2017, 54(5):051404(in Chinese).
[10] ZHOU Z, BHAMARE S, RAMAKRISHNAN G, et al. Thermal relaxation of residual stress in laser shock peened Ti-6Al-4V alloy[J]. Surface & Coatings Technology, 2012, 206(22):4619-4627.
[11] ZHU Y, FU J, ZHENG C. et al. Influence of laser shock peening on morphology and mechanical property of Zr-based bulk metallic glass[J]. Optics & Lasers in Engineering, 2015, 74:75-79.
[12] GUO Y B, CASLARU R. Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6Al-4V surfaces[J]. Journal of Materials Processing Technology, 2011, 211(4):729-736. doi: 10.1016/j.jmatprotec.2010.12.007
[13] SUN R, LI L, ZHU Y, et al. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening[J]. Modelling & Simulation in Materialsence & Engineering, 2017, 25(6):1-16.
[14] ZHANG L, LU J Z, ZHANG Y K, et al. Effects of laser shock processing on morphologies and mechanical properties of ANSI304 stainless steel weldments subjected to cavitation erosion[J]. Materials, 2017, 10(3):292-294. doi: 10.3390/ma10030292
[15] SHADANGI Y, CHATTOPADHYAY K, RAI S B, et al. Effect of laser shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel[J]. Surface & Coatings Technology, 2015, 280:216-224.
[16] PETAN L, OCANA JL, GRUM J. Effects of laser shock peening on the surface integrity of 18% Ni maraging steel[J]. Strjniski Vestnik-Journal of Mechanical Engineering, 2016, 62(5):291-298. doi: 10.5545/sv-jme.2015.3305
[17] LI X Y, YAN Y G, MA L, et al. Cavitation erosion and corrosion behavior of copper-manganese-aluminum alloy weldment[J]. Materials Science & Engineering, 2004, A382(1):82-89.
[18] DUAN Ch H, ZHOU J J, PEI Y T, et al. Study on residual stress distribution of TC17 titanium alloy by one-side and two-side laser shock peening[J]. Laser Technology, 2019, 43(2): 161-167(in Chinese).
[19] KRELLA A, CZYZNIEWSKI A. Influence of the substrate hardness on the cavitation erosion resistance of TiN coating[J]. Wear, 2007, 263(1/6):395-401.
[20] HUA Y Q, CAI Zh R, CHEN R F, et al. Experiment and numerical simulation of overlapping laser shock processing in TC4 titanium alloy[J]. Laser Technology, 2010, 34(5):632-635(in Chinese).
[21] ZHOU J Zh, YANG J Ch, ZHOU M, et al. Experimental study on the effects of overlay properties on laser-induced shock waves[J]. Chinese Journal of Lasers, 2002, 29(11):1041-1044(in Chinese).
[22] LU J Z, WU L J, SUN G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia, 2017, 127:252-266. doi: 10.1016/j.actamat.2017.01.050
[23] TAN Y, WU G, YANG J M, et al. Laser shock peening on fatigue crack growth behavior of aluminium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 27(8):649-656.
[24] AL-OBAID Y F. The effect of shot peening on stress corrosion cracking behaviour of 2205-duplex stainless steel[J]. Engineering Fracture Mechanics, 1995, 51(1):19-25.
[25] LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11):3984-3994. doi: 10.1016/j.actamat.2010.03.026
[26] SANO Y, OBATA M, KUBO T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science & Engineering, 2006, A417(1):334-340.