[1] INTERNATIONAL CIVIL AVIATION ORGANIZATION. Manual on low-level wind shear[M].Ottawa, Canada:International Civil Aviation Organization, 2005:5-27.
[2] CAO Sh Y, ZHANG J, SHI D P, et al. Analysis on the elevated thunderstorms in the past decade in Jiangsu[J]. Journal of the Meteorological Sciences, 2018, 38(5):681-691(in Chinese).
[3] FUJITA T T, CARACENA F. An analysis of three weather-related aircraft accidents[J]. Bulletin of the American Meteorological Society, 1977, 58(11):1164-1181. doi: 10.1175/1520-0477(1977)058<1164:AAOTWR>2.0.CO;2
[4] FUJITA T T, BYERS R M. Spearhead echo and downbursts in the crash of an airliner[J]. Monthly Weather Review, 1977, 105:129-146. doi: 10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2
[5] JIN Ch J, ZHANG H, ZHU R B, et al. A study on low level wind shear risk estimation criterion[J]. Acta Aeronauticaet Astronautica Sinica, 1992, 13(10):481-486(in Chinese).
[6] WANG Q M, GUO L L. Development of lidar in detection of low altitude wind shear[J]. Laser and Infrared, 2012, 42(12):1324-1328(in Chinese).
[7] UYEDA H, ZRNIC D S. Automatic detection of gust fronts[J]. Journal of Atmospheric and Oceanic Technology, 1986, 3(1):36-50. doi: 10.1175/1520-0426(1986)003<0036:ADOGF>2.0.CO;2
[8] EVANS J E, DUCOT E R. The integrated terminal weather system(ITWS)[J]. Lincoln Laboratory Journal, 1994, 7(2):449-474. doi: 10.3406/anami.1990.2270
[9] CAMPBELL S D, OLSON S H. Recognizing low-altitude wind shear hazards from Doppler weather radar:An artificial intelligence approach[J]. Journal of Atmospheric and Oceanic Technology, 1987, 4(1):32-34.
[10] WANG N, LIU L P, XU B X, et al. Recognizing low-altitude wind shear and convergence line with doppler radar[J]. Journal of Applied Meteorological Science, 2007, 18(3):314-320 (in Chin-ese).
[11] YAN W H, HUANG X Y, LI Y Y, et al. Research on shear detection algorithm based on Doppler weather radar for low-elevation Doppler velocity[J]. Journal of Tropical Meteorology, 2019, 35(2):253-261(in Chinese).
[12] WANG L, WEI M, YANG T. An advanced algorithm for recognizing wind shear using airborne Doppler weather radar[J]. Journal of Aero-space Engineering, 2015, 229(14):2547-2558.
[13] XIONG X L, CHEN N, LI Y D, et al. Type recognition of low-level wind shear based on convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41(4):772-779(in Chinese).
[14] ZHANG H W, WU S H, YIN J P, et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4):468-476(in Chinese).
[15] ARNIJO L. A theory for the determination of wind and precipitation velocities with Doppler radars[J]. Journal of the Atmospheric Sciences, 1969, 26(3) :570-573. doi: 10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2
[16] WENG N Q, XIAO L M, GONG Zh B, et al. The theory and experimental verification of 915M microwave radar[J]. Journal of Quantum Electronics, 2001, 18(1):92-96(in Chinese).
[17] WU S, YIN J, LIU B, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[C]// Lidar Remote Sensing for Environmental Monitoring ⅩⅣ. Beijing: International Society for Optics and Photonics, 2014: 92620H.
[18] WU S, LIU B, LIU J, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10):A762-A780. doi: 10.1364/OE.24.00A762
[19] FENG L T, ZHOU J, FAN Q, et al. three-dimensional lidar for wind shear detection and early warning in civil aviation airport[J]. Acta Photonica Sinica, 2019, 48(5):0512001(in Chinese). doi: 10.3788/gzxb20194805.0512001
[20] LI C, ZHAO P E, PENG T, et al. Technical research of 3-D wind lidar[J]. Laser Technology, 2017, 41(5):703-707(in Chinese).
[21] FUJITA T T. The downburst (report of projects NIMROD and JAWS)[R]. Chicage, USA:University of Chicago, 1985:122.