[1] DAHAN D, EISENSTEIN G. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering[J]. Optics Express, 2005, 13(16): 6234-6249.
[2] DAI L, LI T, JING C. Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide[J]. Journal of the Optical Society of America, 2011, B28(7): 1622-1626.
[3] KURT H, ERIM N, USTUN K. Slow light based on optical surface modes of two-dimensional photonic crystals[J]. Journal of the Optical Society of America, 2012, B29(6): 1187-1193.
[4] VARMAZYARI V, HABIBIYAN H, GHAFOORIFARD H. All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides[J]. Applied Optics, 2013, 52(26): 6497-6505.
[5] MUN~OZ M C, PETROV A Y, O'FAOLAIN L, et al. Optically induced indirect photonic transitions in a slow light photonic crystal waveguide[J]. Physical Review Letters, 2014, 112(5): 053904.
[6] WU J W, LUO F G. Slow light transmission of low power signal optical pulse in uniform periodic structure[J]. Laser Technology, 2007, 31(6):593-599 (in Chinese).
[7] SENTHILNATHAN K, RAMESH BABU P, PORSEZIAN K, et al. Grating solitons near the photonic bandgap of a fiber Bragg grating[J]. Chaos, Solitons & Fractals, 2007, 33(2): 523-531.
[8] QI Y F, HOU C L, BI W H. Theoretical and experimental research on fiber Bragg gratings in grapefruit photonic crystal fibers[J]. Chinese Journal of Lasers, 2012, 39(2): 0205004 (in Chinese).
[9] CHEN J J, MURAT H, HU Y T. Theoretical investigation on bistable switching and dynamic characteristics of tapered nonlinear Bragg gratings[J]. Laser & Optoelectronics Progress, 2011(1): 010606 (in Chinese).
[10] LENZ G, EGGLETON B J, MADSEN C K, et al. Optical delay lines based on optical filters[J]. IEEE Journal of Quantum Electronics, 2001, 37(4): 525-530.
[11] MOK J T, de STERKE C M, EGGLETON B J. Delay-tunable gap-soliton-based slow-light system[J]. Optics Express, 2006, 14(25): 11987-11996.
[12] MOK J T, IBSEN M, de STERKE C M, et al. Dispersionless slow light with 5-pulse-width delay in fibre Bragg grating[J]. Electronics Letters, 2007, 43(25): 1418-1419.
[13] HOPMAN W C L, HOEKSTRA H, DEKKER R, et al. Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings[J]. Optics Express, 2007, 15(4): 1851-1870.
[14] LIU H C, YARIV A. Grating induced transparency (GIT) and the dark mode in optical waveguides[J]. Optics Express, 2009, 17(14): 11710-11718.
[15] QIAN K, ZHAN L, LI H, et al. Tunable delay slow-light in an active fiber Bragg grating[J]. Optics Express, 2009, 17(24): 22217-22222.
[16] EGGLETON B J, LENZ G, LITCHINITSER N M. Optical pulse compression schemes that use nonlinear pulse compression in Bragg gratings[J]. Fiber & Integrated Optics, 2000, 19(4): 383-421.
[17] KIM B S, CHUNG Y, LEE J S. An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes[J]. IEEE Journal of Quantum Electronics, 2000, 36(7): 787-794.
[18] MAITRA A, POULTON C G, WANG J, et al. Low switching threshold using nonlinearities in stopband-tapered waveguide Bragg gratings[J]. IEEE Journal of Quantum Electronics, 2005, 41(10): 1303-1308.