[1] CUNNINGHAM C. Future optical technologies for telescopes [J]. Nature Photonics, 2009, 3(5): 239-241. doi: 10.1038/nphoton.2009.49
[2] MEYER L, GHEZ A M, SCHODEL R, et al. The shortest-known-period star orbiting our Galaxy’s supermassive black hole [J]. Science, 2012, 338(6103):84-87. doi: 10.1126/science.1225506
[3] FOY R, LABEYRIE A. Feasibility of adaptive telescope with laser probe [J]. Astronomy and Astrophysics, 1985, 152: L29-L31. doi: 10.1002/asna.2113060608
[4] PRIMMERMAN C A, MURPHY D V, PAGE D A, et al. Compensation of atmospheric optical distortion using a synthetic beacon [J]. Nature, 1991, 353(6340):141-143. doi: 10.1038/353141a0
[5] FUGATE R Q, FRIED D L, AMEER G A, et al. Measurement of atmospheric wavefront distortion using scattered light form a laser guide-star [J]. Nature, 1991, 353:144-146. doi: 10.1038/353144a0
[6] THOMPSON L A, GARDNER C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy [J]. Nature, 1987, 328:229-231. doi: 10.1038/328229a0
[7] HUMPHREYS R A, PRIMMERMAN C A, BRADLEY L C, et al. Atmospheric-turbulence measurements using a synthetic beacon in the mesospheric sodium layer [J]. Optics Letters, 1991, 16(18):1367-1369. doi: 10.1364/OL.16.001367
[8] DRUMMOND J, TELLE J, DENMAN C, et al. Photometry of a sodium laser guide star at the starfire optical range [J]. Publications of the Astronomical Society of the Pacific, 2004, 116(817):278-289. doi: 10.1086/382756
[9] FRIEDMAN H W. Laser system design for the generation of a sodium-layer laser guide star [J]. Proceedings of the SPIE, 1993, 1859:251-262. doi: 10.1117/12.145503
[10] QUIRRENBACH A, HACKENBERG W, HOLSTENBERG H C, et al. The sodium laser guide star system of ALFA [J]. Proceedings of the SPIE, 1997, 3126:35-43. doi: 10.1117/12.279051
[11] BIAN Q, BO Y, ZUO J W, et al. High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression and D2b re-pumping [J]. Optics Letters, 2016, 41(8):1732-1735. doi: 10.1364/OL.41.001732
[12] SAITO N, AKAGAWA K, ITO M, et al. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd∶YAG lasers[J]. Optics Letters, 2007, 32(14):1965-1967. doi: 10.1364/OL.32.001965
[13] LEE I, JALALI M, VANASSE N, et al. 20W and 50W guide star laser system update for the Keck I and gemini south telescopes [J]. Proceedings of the SPIE, 2008, 7015:70150N. doi: 10.1117/12.790534
[14] PENNINGTON D M, DAWSON J W, DROBSHOFF A, et al. Compact fiber laser system for 589nm laser guide star generation [C]// 2005 Conference on Lasers and Electro-optics. New York,USA:IEEE, 2005: 532.
[15] TAYLOR L R, FENG Y, CALIA D B. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers [J]. Optics Express, 2010, 18(8): 8540-8555. doi: 10.1364/OE.18.008540
[16] HUA L L, YANG Y. Characteristics and development of optically pumped vertical external cavity surface emitting lasers [J]. Materials Review, 2013, 27(6):64-69(in Chinese).
[17] LI B Zh, ZOU Y G. Tunable vertical cavity surface emitting laser [J]. Laser Technology, 2018, 42(4): 556-561(in Chinese).
[18] KUZNETSOV M, HAKIMI F, SPRAGUE R, et al. High-power (0.5W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams [J]. IEEE Photonics Technology Letters, 1997, 9(8):1063-1065. doi: 10.1109/68.605500
[19] GERSTER E, HAHN C, LORCH S, et al. Frequency-doubled GaAsSb/GaAs semiconductor disk laser emitting at 589nm [C]// 2003 the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society. New York, USA: IEEE, 2003: 981-982.
[20] MOLONEY J V, HADER J, ZAKHARIAN A R. Closed-loop design and demonstration of an 1178nm multi-watt VECSEL for a Sodium Guidestar Source [C]//2007 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2007:116.
[21] FAN L, HESSENIUS C, FALLAHI M, et al. Highly strained InGaAs/GaAs vertical-external-cavity surface-emitting laser for the generation of coherent yellow-orange light [J]. Proceedings of the SPIE, 2008, 6871:687119. doi: 10.1117/12.763529
[22] FALLAHI M, FAN L, KANEDA Y, et al. 5W yellow laser by intra-cavity frequency doubling of high-power vertical-external-cavity surface-emitting laser [J]. IEEE Photonics Technology Letters, 2008, 20(20):1700-1702. doi: 10.1109/LPT.2008.2003413
[23] KANEDA Y, FALLAHI M, HADER J, et al. Compact narrow-linewidth 589 nm laser source [C]//2009 Conference on Lasers and Electro-Optics (CLEO) and 2009 Conference on Quantum electronics and Laser Science Conference. New York, USA: IEEE, 2009: 17-26.
[24] LEINONEN T, HRKNEN A, KORPIJRVI V M, et al. High-power narrow-linewidth optically pumped dilute nitride disk laser with emission at 589nm [J]. Proceedings of the SPIE, 2010, 7720:772016. doi: 10.1117/12.854747
[25] LEINONEN T, HÄRKÖNEN A, KORPIJRVI V M, et al. 589nm multi-watt narrow linewidth optically pumped semiconductor laser for laser guide stars[C]//2010 Advanced Solid-State Photonics. New York, USA: IEEE, 2010: 10.
[26] HESSENIUS C, GUINET P Y, LUKOWSKI M. 589nm single-frequency VECSEL for sodium guide star applications [J]. Proceedings of the SPIE, 2012, 8242:82420E. doi: 10.1117/12.909697
[27] LEINONEN T, KORPIJRVI V M, HRKNEN A, et al. Recent advances in the development of yellow-orange GaInNAs-based semiconductor disk lasers [J]. Proceedings of the SPIE, 2012, 8242: 824208. doi: 10.1117/12.906204
[28] BERGER J D, CHILLA J L A, GOVORKOV S, et al. Towards a practical sodium guide star laser source: Design for >50Watt LGS based on OPSL [J]. Proceedings of the SPIE, 2012, 8447: 84470G.
[29] ALFORD W J, FETZER G J, EPSTEIN R J, et al. Optically pumped semiconductor lasers for precision spectroscopic applications [J]. IEEE Photonics Technology Letters, 2013, 49(8):719-727.
[30] KANTOLA E, LEINONEN T, RANTA S, et al. High-efficiency 20W yellow VECSEL[J]. Optics Express, 2014, 22(6):6372-6380. doi: 10.1364/OE.22.006372
[31] YANG J H, DAI Sh X, WEN L, et al. Mixed heavy metal effect on emission properties of Er3+-doped borosilicate glasses [J]. Chinese Optics Letters, 2003, 1(5):294-295. doi: 10.1023/A:1022289509702
[32] GEBAVI H, MILANESE D, BALDA R, et al. Spectroscopy and optical characterization of thulium doped TZN glasses [J]. Journal of Physics, 2010, D43(13):135104-135111.
[33] XU Sh Q, SUN H T, DAI Sh X, et al. Upconversion luminescence of Tm3+/Yb3+-codoped oxyhalide tellurite glasses [J]. Solid State Communications, 2005, 133(2):89-92. doi: 10.1016/j.ssc.2004.10.010
[34] PENG B, IZUMITANI T. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ [J]. Optics Materials, 1995, 4(6):797-810. doi: 10.1016/0925-3467(95)00032-1
[35] ZHOU B, TAO L L, TSANG Y H, et al. Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses[J]. Optics Express, 2012, 20(11):12205-12211. doi: 10.1364/OE.20.012205
[36] ELIZEBETH A, THOMAS V, JOSE G, et al. Studies on the growth and optical characterization of dysprosium gadolinium oxalate single crystals [J]. Crystal Research Technology, 2004, 39(2):105-110. doi: 10.1002/crat.200310156
[37] BOWMAN S R, O’CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers [J]. Optics Express, 2012, 20(12):12906-12911. doi: 10.1364/OE.20.012906
[38] METZ P W, MOGLIA F, REICHERT F, et al. Novel rare earth solid state lasers with emission wavelengths in the visible spectral range [C]//2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference. New York,USA:IEEE, 2013: 201-230.
[39] BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy, Tb∶LiLuF4 [J]. Optics Letters, 2014, 39(23):6628-6631. doi: 10.1364/OL.39.006628
[40] WANG Y, YOU Zh Y, LI J F, et al. Optical properties of Dy3+ ion in GGG laser crystal [J]. Journal of Physics, 2010, D43(7):075402-075407.
[41] ZHAO W, ZHOU W W, WEI B, et al. Spectroscopic assessment of Dy3+∶LiLa(MoO4)2 crystal as an active medium for all-solid-state direct yellow-emitting lasers [J]. Journal of Alloys and Compounds, 2012, 538:136-143. doi: 10.1016/j.jallcom.2012.05.109
[42] WANG Y Q, ZHU Zh J, LI J F, et al. Spectral assessment analysis of Dy3+-doped Ca3La2(BO3)4 crystal: A candidate for solid state yellow lasers [J]. Laser Physics, 2014, 24(4):045804. doi: 10.1088/1054-660X/24/4/045804
[43] HUANG J H, CHEN Y J, HUANG J H, et al. Spectroscopic investigation of Dy3+∶Lu2Si2O7 single crystal: A potential 589nm laser medium [J]. Optics Materials, 2017, 72:156-160. doi: 10.1016/j.optmat.2017.05.046