高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

J0相关径向偏振涡旋光束紧聚焦的空间相干特性

饶连周

引用本文:
Citation:

J0相关径向偏振涡旋光束紧聚焦的空间相干特性

    作者简介: 饶连周(1962-), 男, 教授, 主要从事激光传输、光电技术的研究。E-mail: 8310176@163.com.
  • 基金项目:

    国家自然科学基金资助项目 51601104

    福建省教育厅研究基金资助项目 JT180501

  • 中图分类号: TN241

Spatial correlation properties of tightly focused J0-correlated

  • CLC number: TN241

  • 摘要: 为了研究J0相关径向偏振涡旋光束深聚焦的相干特性,采用矢量德拜理论和相干理论,对聚焦场在光轴和焦平面上的相干特性进行了理论分析和数值仿真,取得相干度表达式和模拟数据。结果表明,在焦点区域的纵向相干度不但随着拓扑荷数n的增加而增大,而且还随着相干参量或者数值孔径dNA的增大而减小;在焦平面的横向相干度也随着拓扑荷数或者相干参量或者数值孔径的增大而减小; 当n≥5或者dNA≤0.4时,纵向相干度在焦点附近约为1;这种相干度还存在相位异常点。这些研究结果对J0相关矢量涡旋光束在许多领域的应用具有一定意义。
  • Figure 1.  Fig. 1 Real parts and modulus of μ(0, 0, 0;0, 0, z)for different values of topological charge n and coherence parameter δ

    Figure 2.  Modulus of μ(0, 0, z1; 0, 0, z2)for different values of topological charge n and coherence parameterδ

    Figure 3.  Modulus of μ(0, 0, -z; 0, 0, z) for different values of topological charge n and coherence parameter δ

    Figure 4.  a—intensity distribution b~f—the degree of coherence μ(0, 0, 0;x, 0, 0) in the focal plane

  • [1]

    FANG G J, TIAN B, PU J X. Focusing properties of the double-vortex beams through a high numerical-aperture objective[J]. Optics and Laser Technology, 2012, 44(2): 441-445. doi: 10.1016/j.optlastec.2011.08.009
    [2]

    ZHAO J H, WANG Q, ZHU B W, et al. Compact focusing properties of radial vector beam with vortex phase encoding[J]. Laser Technology, 2017, 41(2): 187-190(in Chinese).
    [3]

    HUANG S, WANG X L, ZHU Z Q, et al. Focusing field of the radial vector beams with multi-vortex phases[J]. Optics Communications, 2016, 366: 142-147. doi: 10.1016/j.optcom.2015.12.056
    [4]

    PING C C, LIANG C H, WANG F, et al. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties[J]. Optics Express, 2017, 25(26): 32475-32490. doi: 10.1364/OE.25.032475
    [5]

    XU J G, GENG T, GAO X M, et al. Generation of a dark spot beyond the diffraction limit with a radially polarized vortex beam[J]. Journal of the Optical Society of America, 2017, A34(12): 2165-2169.
    [6]

    WANG X L, ZHU B W, DONG Y X, et al. Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays[J]. Optics Express, 2017, 25(22): 26844-26852. doi: 10.1364/OE.25.026844
    [7]

    FAN C J, LIU Y G, WANG X Y, et al. Trapping two types of particles by using a tightly focused radially polarized power-exponent-phase vortex beam[J]. Journal of the Optical Society of America, 2018, A35(6): 903-907.
    [8]

    ZHANG Z M, PU J X, WANG X Q. Focusing of partially coherent Bessel-Gaussian beams through a high-numerical-aperture objective[J]. Optics Letters, 2008, 33(1): 49-51. doi: 10.1364/OL.33.000049
    [9]

    CHEN B S, ZHANG Z M, PU J X. Tight focusing of partially cohe-rent and circularly polarized vortex beams[J]. Journal of the Optical Society of America, 2009, A26(4): 862-869.
    [10]

    FISCHER D G, VISSER T D. Spatial correlation properties of focused partially coherent light[J]. Journal of the Optical Society of America, 2004, A21(11): 2097-2102.
    [11]

    GUO L N, TANG Z L, LIANG C Q, et al. Characterization of tightly focused partially coherent radially polarized vortex beams[J]. Chinese Optics Letters, 2010, 8(5): 520-523. doi: 10.3788/COL20100805.0520
    [12]

    GUO L N, TANG Z L, LIANG C Q, et al. Intensity and spatial co-rrelation properties of tightly focused partially coherent radially pola-rized vortex beams[J]. Optics & Laser Technology, 2011, 43(4): 895-898.
    [13]

    DONG Y M, CAI Y J, ZHAO C L. Degree of polarization of a tightly focused partially coherent dark hollow beam[J]. Applied Phy-sics, 2011, B105(2): 405-414.
    [14]

    LIU P S, YANG H J, RONG J, et al. Focusing of stochastic electromagnetic Gaussian Schell-model beams through a high numerical a-perture objective[J]. Optics Communications, 2011, 284(4): 909-914. doi: 10.1016/j.optcom.2010.10.016
    [15]

    LI J, GAO X M, CHEN Y R. Tight focusing of J0-correlated Gaussian Schell-model beam through high numerical aperture[J]. Optics Communications, 2012, 285(16): 3403-3411. doi: 10.1016/j.optcom.2012.04.009
    [16]

    RAO L Z, LIN H C, XU G Z. Tight focusing of J0-correlated azimuthally polarized vortex beams[J]. High Power Laser and Particle Beams, 2013, 25(8): 1945-1950(in Chinese). doi: 10.3788/HPLPB20132508.1945
    [17]

    RAO L Z, LIN H C, SUN Q Q. Spatial correlation properties of tightly focused J0-correlated azimuthally polarized vortex beams[J]. Chinese Physics Letters, 2013, 30(5): 054211. doi: 10.1088/0256-307X/30/5/054211
    [18]

    XU H F, ZHOU Y, WU H W, et al. Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams[J]. Optics Express, 2018, 26(16): 20076-20088. doi: 10.1364/OE.26.020076
    [19]

    MARIYAL C, SURESH P, RAJESH K B, et al. Effect of annular obstruction on tight focusing of partially coherent radially polarized Vortex beam[J]. Optik, 2014, 125(12): 2934-2937. doi: 10.1016/j.ijleo.2013.12.080
    [20]

    XU H F, ZHANG R, SHENG Z Q, et al. Focus shaping of partially coherent radially polarized vortex beam with tunable topological charge[J]. Optics Express, 2019, 27(17): 23959-23969. doi: 10.1364/OE.27.023959
    [21]

    GU M. Advanced optical imaging theory[M]. Berlin, Germany: Springer-Verlag, 1999: 17-21.
    [22]

    MANDEL L, WOLF E. Optical coherence and quantum optics[M]. Cambridge, UK: Cambridge University, 1995: 37-39.
    [23]

    PALMA C, BORGHI R, CINCOTTI G. Beams originated by J0-co-rrelated Schell-model planar sources[J]. Optics Communications, 1996, 125(1): 113-121. 
  • [1] 陆丹葛廷武伍剑徐坤林金桐 . D形双包层大模场光纤激光偏振特性研究. 激光技术, 2009, 33(5): 509-511. doi: 10.3969/j.issn.1001-3806.2009.05.013
    [2] 郁步昭王吉明刘友文吴彤路元刚杨雁南 . 电控矢量涡旋光的偏振测试研究. 激光技术, 2022, 46(4): 454-459. doi: 10.7510/jgjs.issn.1001-3806.2022.04.003
    [3] 程阳 . 1维全息光子晶体的偏振特性. 激光技术, 2010, 34(2): 279-281. doi: 10.3969/j.issn.1001-3806.2010.02.037
    [4] 曹开法汪少林方欣谢军赵培涛胡顺星胡欢陵 . 激光偏振技术压缩激光雷达信号动态范围. 激光技术, 2009, 33(1): 60-62.
    [5] 赵廷靖 . 光阑对部分相干光束轴向偏振特性的影响. 激光技术, 2008, 32(4): 424-426,433.
    [6] 饶明辉何振江杨冠玲艾锦云 . 偏振控制法紫外写入Bragg光纤光栅的特性分析. 激光技术, 2004, 28(1): 61-64.
    [7] 赵茗黄维玲胡鹏李志刚 . Nd:YAG激光器电光调Q偏振片漏光现象的实验研究. 激光技术, 2003, 27(2): 85-87.
    [8] 沈学举周胜国王龙 . 高斯光束照射下联合变换相关器特性研究. 激光技术, 2009, 33(4): 429-432. doi: 10.3969/j.issn.1001-3806.2009.04.028
    [9] 魏勇朱艳英 . 拉盖尔-高斯涡旋光束传播中的相位变化分析. 激光技术, 2015, 39(5): 723-726. doi: 10.7510/jgjs.issn.1001-3806.2015.05.029
    [10] 李瑶莫伟成杨振刚刘劲松王可嘉 . 利用超表面天线阵列产生太赫兹涡旋光束. 激光技术, 2017, 41(5): 644-648. doi: 10.7510/jgjs.issn.1001-3806.2017.05.005
    [11] 朱焯炜徐建才仓吉 . 湍流大气中J0相关部分相干平顶光束的传输特性. 激光技术, 2010, 34(4): 565-568. doi: 10.3969/j.issn.1001-3806.2010.04.035
    [12] 成纯富王又青欧艺文张金业 . 高相干度超连续谱的产生和脉冲压缩的研究. 激光技术, 2013, 37(5): 610-617. doi: 10.7510/jgjs.issn.1001-3806.2013.05.011
    [13] 朱焯炜苏宙平 . 湍流大气中J0相关部分相干平顶光束的谱移. 激光技术, 2012, 36(4): 532-535. doi: 10.3969/j.issn.1001-806.2012.04.025
    [14] 叶大华 . 高斯光束特性分析及其应用. 激光技术, 2019, 43(1): 142-146. doi: 10.7510/jgjs.issn.1001-3806.2019.01.028
    [15] 陈华英刘三秋李晓卿 . 椭圆偏振激光在等离子体中的调制不稳定性. 激光技术, 2009, 33(1): 77-79.
    [16] 许森东徐弼军 . GSM光束在负折射率介质中的传输特性研究. 激光技术, 2014, 38(5): 595-598. doi: 10.7510/jgjs.issn.1001-3806.2014.05.004
    [17] 张永强王贵兵唐小松 . 复合材料激光辐照过程中的吸收特性分析. 激光技术, 2009, 33(6): 590-592,596. doi: 10.3969/j.issn.1001-3806.2009.06.009
    [18] 孙秦田雷超武耀星尹培琪王均武王新兵左都罗 . 朗缪尔探针诊断脉冲激光锡等离子体特性. 激光技术, 2021, 45(1): 109-114. doi: 10.7510/jgjs.issn.1001-3806.2021.01.019
    [19] 何金枫王吉明刘友文路元刚 . Ince-Gaussian矢量光场束腰位置对紧聚焦特性影响的研究. 激光技术, 2021, 45(1): 1-6. doi: 10.7510/jgjs.issn.1001-3806.2021.01.001
    [20] 张军孙晓泉陈修桥李军梅 . 激光箔条的角散射数值模拟. 激光技术, 2005, 29(2): 210-212.
  • 加载中
图(4)
计量
  • 文章访问数:  5903
  • HTML全文浏览量:  5405
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-06-19
  • 刊出日期:  2021-03-25

J0相关径向偏振涡旋光束紧聚焦的空间相干特性

    作者简介: 饶连周(1962-), 男, 教授, 主要从事激光传输、光电技术的研究。E-mail: 8310176@163.com
  • 1. 三明学院 机电工程学院, 三明 365004
  • 2. 三明学院 福建省装备智能控制重点实验室,三明 365004
基金项目:  国家自然科学基金资助项目 51601104福建省教育厅研究基金资助项目 JT180501

摘要: 为了研究J0相关径向偏振涡旋光束深聚焦的相干特性,采用矢量德拜理论和相干理论,对聚焦场在光轴和焦平面上的相干特性进行了理论分析和数值仿真,取得相干度表达式和模拟数据。结果表明,在焦点区域的纵向相干度不但随着拓扑荷数n的增加而增大,而且还随着相干参量或者数值孔径dNA的增大而减小;在焦平面的横向相干度也随着拓扑荷数或者相干参量或者数值孔径的增大而减小; 当n≥5或者dNA≤0.4时,纵向相干度在焦点附近约为1;这种相干度还存在相位异常点。这些研究结果对J0相关矢量涡旋光束在许多领域的应用具有一定意义。

English Abstract

    • 众所周知,由于涡旋光束的独有特性,人们对偏振涡旋光束通过大数值孔径的紧聚焦特性进行了广泛的研究[1-7]。特别是紧聚焦的涡旋光束会产生波长尺度的光斑或暗核,这些结果可以应用于许多领域。近年来,部分相干光通过大数值孔径的紧聚焦特性也引起了极大的研究兴趣[8-20]。例如,FISCHER和VISSER[10]研究了部分相干紧聚焦光场的光谱相干特性;GUO等人[11]研究了部分相干径向偏振光涡旋光束紧聚焦的空间相干特性;还有一些研究人员[15-17]分析了J0相关偏振光束紧聚焦的传输特性等等。然而,通过大数值孔径的J0相关径向偏振光束的空间相干特性鲜见相关研究报道。本文中,将基于矢量德拜衍射理论,研究J0相关径向偏振光束的紧聚焦场,分析焦点区域光场的光谱相干度。结果表明,焦点区域相干度不仅与数值孔径大小和相干参量有关,而且还与拓扑电荷数有关。特别是,相干度还具有相位异常点。

    • 一个完全相干且径向偏振的光束,通过大数值孔径聚焦后,在焦点区域的电场可以表示为[21]:

      $ \begin{array}{l} \mathit{\boldsymbol{E}}\left( {r,\psi ,z} \right) = \left[ {\begin{array}{*{20}{l}} {{E_x}}\\ {{E_y}}\\ {{E_z}} \end{array}} \right] = \frac{{ - {\rm{i}}A}}{{\rm{ \mathsf{ π} }}}\int_0^\alpha {\int_0^{2{\rm{ \mathsf{ π} }}} {\sqrt {\cos \theta } \sin \theta \times \;} } \;\;\;\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;B\left( {\theta ,\phi } \right)\left[ {\begin{array}{*{20}{l}} {\sin \theta \cos \phi }\\ {\cos \theta \sin \phi }\\ { - sin\theta } \end{array}} \right] \times \;\\ \exp \left[ {{\rm{i}}k\left( {z\cos \theta + r\sin \theta \cos \left( {\phi - \psi } \right)} \right)} \right]{\rm{d}}\phi {\rm{d}}\theta \end{array} $

      (1)

      式中,r, ψz是焦点区域中的径向、角向和纵向坐标, φ为入射光束的方位角, 波数k=2π/λ, A是常数,α=arcsin(dNA)是由透镜的数值孔径(numerical aperture, NA)决定的最大角度,θ是入射光束的会聚角, 并从0变化到αB(θ, φ)是入射场的切趾函数。

      部分相干涡旋光束的相干特性可以用交叉谱密度矩阵来描述,矩阵元素的表达式如下[22]:

      $ \begin{array}{l} {W_{ij}}\left( {{r_1}, {r_2}} \right) = \langle E_i^*\left( {{r_1}, {\psi _1}, {z_1}} \right) \times \\ \;\;{E_j}\left( {{r_2}, {\psi _2}, {z_2}} \right)\rangle , \left( {i, j = x, y, z} \right) \end{array} $

      (2)

      式中,Ei*(r1, ψ1, z1)和Ej(r2, ψ2, z1)表示两点处电场的笛卡尔分量,*表示复共轭,〈〉表示系综平均值。将(1)式代入(2)式,焦点区域交叉密度矩阵的元素就可以表示为:

      $ \begin{array}{l} {W_{ij}}\left( {{r_1}, {\psi _1}, {z_1};{r_2}, {\psi _2}, {z_2}} \right) = {\left( {\frac{A}{{\rm{ \mathit{ π} }}}} \right)^2}\int_0^\alpha {\int_0^\alpha {\int_0^{2{\rm{ \mathit{ π} }}} {\int_0^{2{\rm{ \mathit{ π} }}} {\sqrt {\cos {\theta _1}} \times } } } } \\ \;\;\;\;\;\;\;\;\;\sqrt {\cos {\theta _2}} \sin {\theta _1}\sin {\theta _2}{B_0}\left( {{\theta _1}, {\phi _1}, {\theta _2}, {\phi _2}} \right) \times \\ \;\;\exp \left[ { - {\rm{i}}k{r_1}\sin {\theta _1}cos\left( {{\phi _1} - {\psi _1}} \right)} \right]\exp \left[ {ik{r_2}\sin {\theta _2} \times } \right.\\ \;\;\;\;\;\;\;\cos \left. {\left( {{\phi _2} - {\psi _2}} \right)} \right]{P_i}\left( {{\theta _1}, {\phi _1}} \right){P_j}\left( {{\theta _2}, {\phi _2}} \right) \times \\ \exp \left[ {{\rm{i}}k\left( {{z_2}\cos {\theta _2} - {z_1}\cos {\theta _1}} \right)} \right]d{\theta _1}d{\theta _2}d{\phi _1}d{\phi _2}, \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {i, j = x, y, z} \right) \end{array} $

      (3)

      $ {P_{i, j}}\left( {\theta , \phi } \right) = \left\{ \begin{array}{l} \sin \theta \cos \phi , \left( {i, j = x} \right)\\ \cos \theta \sin \phi , \left( {i, j = y} \right)\\ - \sin \theta , \left( {i, j = z} \right) \end{array} \right. $

      (4)

      式中, B0(θ1, φ1, θ2, φ2)=B*(θ1, φ1)B(θ2, φ2)称为入射光束的切趾相干函数。假设通过大数值孔径聚焦的光束是一个J0相关高斯-谢尔模型涡旋光束,这种光束的切趾相干函数可以表示为[17, 23]:

      $ \begin{array}{l} {B_0}\left( {{\theta _1}, {\phi _1}, {\theta _2}, {\phi _2}} \right) = {B^*}\left( {{\theta _1}, {\phi _1}} \right)B\left( {{\theta _2}, {\phi _2}} \right) = \\ \sum\limits_{m = - \infty }^{ + \infty } {\exp \left( { - \frac{{{{\sin }^2}{\theta _1} + {{\sin }^2}{\theta _2}}}{{{d_{{\rm{NA}}}}^2{\sigma ^2}}}} \right){J_m}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin {\theta _1}} \right)} \times \\ {J_m}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin {\theta _2}} \right)\exp \left[ {i\left( {n - m} \right)\left( {{\phi _2} - {\phi _1}} \right)} \right] \end{array} $

      (5)

      式中, σ=w0/d表示光束的相对光斑大小,w0为束腰半径, d为大数值孔径的半径,δ=βd为相干参量, nm为序数,n>m

      光谱相干度是描述紧聚焦光束特性的重要指标,其定义式[10, 17]可以表示为:

      $ \mu \left( {{r_1}, {r_2}} \right) = \frac{{{T_{\rm{r}}}W\left( {{r_1}, {\psi _1}, {z_1};{r_2}, {\psi _2}, {z_2}} \right)}}{{\sqrt {{T_{\rm{r}}}W\left( {{r_1}, {\psi _1}, {z_1}} \right)} \sqrt {{T_{\rm{r}}}W\left( {{r_2}, {\psi _2}, {z_2}} \right)} }} $

      (6)

      式中, Tr表示矩阵对角元素之和。将(4)式和(5)式代入(3)式,即可得到焦区焦点区域的交叉谱密度Wij(r1, ψ1, z1; r2, ψ2, z2)。通过设置r1=r2=rψ1=ψ2=ψz1=z2=z,就可得到焦点区域的光强分布:

      $ \begin{array}{l} I\left( {r, \psi , z} \right) = {T_{\rm{r}}}W\left( {r, \psi , z} \right) = \; = \;{W_{xx}}\left( {r, \psi , z} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;{W_{yy}}\left( {r, \psi , z} \right) + {W_{zz}}\left( {r, \psi , z} \right) \end{array} $

      (7)

      下面通过(3)式~(6)式,进一步分析J0相关径向偏振涡旋光束在光轴和焦平面上的光谱相干度。

    • 现在考虑一对点在光轴上,即r1=(0, 0, z1), r2=(0, 0, z2)。通过使用以下公式:

      $ \begin{array}{l} \int_0^{{\rm{2 \mathit{ π} }}} {\sin \phi \exp \left[ {{\rm{i}}\left( {n - m} \right)\phi + {\rm{i}}kr\sin \theta \cos \left( {\phi - \psi } \right)} \right]} {\rm{d}}\phi = \\ {\rm{ \mathit{ π} }}{{\rm{i}}^{n - m}}\left[ {\exp \left[ {{\rm{i}}\left( {n - m + 1} \right)\psi } \right]} \right.{{\rm{J}}_{n - m + 1}}\left( {kr\sin \theta } \right) + \\ \exp \left[ {{\rm{i}}\left( {n - m - 1} \right)\psi } \right]{{\rm{J}}_{n - m - 1}}\left. {\left( {kr\sin \theta } \right)} \right] \end{array} $

      (8)

      $ \begin{array}{l} \int_0^{{\rm{2 \mathit{ π} }}} {\cos \phi \exp \left[ {i\left( {n - m} \right)\phi + {\rm{i}}kr\sin \theta \cos \left( {\phi - \psi } \right)} \right]} {\rm{d}}\phi = \\ {\rm{ \mathit{ π} }}{{\rm{i}}^{n - m + 1}}\left[ {\exp \left[ {{\rm{i}}\left( {n - m + 1} \right)\psi } \right]{{\rm{J}}_{n - m + 1}}\left( {kr\sin \theta } \right) - } \right.\\ \exp \left[ {{\rm{i}}\left( {n - m - 1} \right)\psi } \right]{{\rm{J}}_{n - m - 1}}\left. {\left( {kr\sin \theta } \right)} \right] \end{array} $

      (9)

      由(3)式可得到交叉谱密度的表达式:

      $ \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left[ \begin{array}{l} {W_{xx}}\left( {0, 0, {z_1};0, 0, {z_2}} \right)\\ {W_{yy}}\left( {0, 0, {z_1};0, 0, {z_2}} \right)\\ {W_{zz}}\left( {0, 0, {z_1};0, 0, {z_2}} \right) \end{array} \right] = \\ {A^2}\left[ \begin{array}{l} {H_{n + 1, x}}^*\left( {{z_1}} \right){H_{n{\rm{ + 1}}, x}}\left( {{z_2}} \right) + {H_{n - 1, x}}^*\left( {{z_1}} \right){H_{n - 1, x}}\left( {{z_2}} \right)\\ {H_{n + 1, y}}^*\left( {{z_1}} \right){H_{n{\rm{ + 1}}, y}}\left( {{z_2}} \right) + {H_{n - 1, y}}^*\left( {{z_1}} \right){H_{n - 1, y}}\left( {{z_2}} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;4{H_{n + 1, x}}^*\left( {{z_1}} \right){H_{n{\rm{ + 1}}, x}}\left( {{z_2}} \right) \end{array} \right] \end{array} $

      (10)

      其中,

      $ \begin{array}{l} \left[ \begin{array}{l} {H_{n + 1, x}}\left( z \right)\\ {H_{n + 1, y}}\left( z \right) \end{array} \right]\; = \int_0^\alpha {\sqrt {\cos \theta } \sin \theta \left[ \begin{array}{l} \sin \theta \\ \cos \theta \end{array} \right]} \exp \left( { - \frac{{{{\sin }^2}\theta }}{{{d_{{\rm{NA}}}}^2{\sigma ^2}}}} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\;\;{{\rm{J}}_{n + 1}}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin \theta } \right)\exp \left( {{\rm{i}}kz\cos \theta } \right){\rm{d}}\theta \end{array} $

      (11)

      $ \begin{array}{l} \left[ \begin{array}{l} {H_{n - 1, x}}\left( z \right)\\ {H_{n - 1, y}}\left( z \right) \end{array} \right]\; = \int_0^\alpha {\sqrt {\cos \theta } \sin \theta \left[ \begin{array}{l} \sin \theta \\ \cos \theta \end{array} \right]} \exp \left( { - \frac{{{{\sin }^2}\theta }}{{{d_{{\rm{NA}}}}^2{\sigma ^2}}}} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\;\;{{\rm{J}}_{n - 1}}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin \theta } \right)\exp \left( {{\rm{i}}kz\cos \theta } \right){\rm{d}}\theta \end{array} $

      (12)

      z1=z2=z代入(7)式和(10)式,可得z轴上的总光强表达式为:

      $ \begin{array}{l} I\left( {0, 0, z} \right) = {A^2}\left[ {5\left| {{H_{n + 1, x}}\left( z \right)\left| {^2 + \left| {{H_{n + 1, y}}\left( z \right)} \right.} \right.} \right.\left| {^2} \right. + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\left| {{H_{n - 1, x}}\left( z \right)\left| {^2} \right.} \right. + \left. {\left| {{H_{n - 1, y}}} \right.\left( z \right)\left| {^2} \right.} \right] \end{array} $

      (13)

      从上式中可以注意到,对于空间完全相干的涡旋光束(即δ=0),只有拓扑荷数n=1时在光轴上有光强,也就是说,拓扑荷数n≠1时, 在光轴上是零光强。然而,对于部分相干涡旋光束,则不存在这种零光强。通过分析(11)式和(12)式中的贝塞尔函数Jn+1和Jn-1,就很容易理解这些现象。而从(10)式、(13)式也很容易领悟一些对称性质,即:

      $ \begin{array}{l} \;\;\;\;{W_{ij}}\left( {0, 0, - {z_1};0, 0, - {z_2}} \right) = \\ {W_{ij}}{\left( {0, 0, {z_1};0, 0, {z_2}} \right)^*}, \left( {i, j = x, y, z} \right) \end{array} $

      (14)

      $ \;I\left( {0, 0, - z} \right) = I\left( {0, 0, z} \right) $

      (15)

      应用(14)式、(15)式和光谱相干度定义(6)式,可以获得以下对称关系:

      $ \mu \left( {0, 0, {z_1};0, 0, {z_2}} \right) = \mu {\left( {0, 0, - {z_1};0, 0, - {z_2}} \right)^*} $

      (16)

      因此,应用(10)式、(13)式和(6)式,就可以确定z轴上的光强分布和纵向相干度。从(10)式可以看出,如果z1保持不变,μ(0, 0, z1; 0, 0, z2)是z2的振荡函数,而振荡周期会随拓扑荷数n和相干参量δ变化。例如由图 1所示,给出纵向相干度μ(0, 0, 0;0, 0, z)实数部分和模随拓扑荷数n和相干参量δ的变化曲线。可以看到,在图 1a~图 1b中的μ(0, 0, 0;0, 0, z)实数部分,其曲线的振荡周期略大于波长,约等于1.2λ~1.35λ。随拓扑荷数n的增加振荡周期会相应增大,但随相干参量δ的增加振荡周期只略有变化。从图 1c~图 1d中可知,在焦点区域的纵向相干度μ(0, 0, 0;0, 0, z)的模随拓扑荷数n的增加或随相干参量δ的减小而增大。图 1中其余参量σ=2, dNA=0.8。

      Figure 1.  Fig. 1 Real parts and modulus of μ(0, 0, 0;0, 0, z)for different values of topological charge n and coherence parameter δ

      图 2为不同拓扑荷数n的纵向相干度μ(0, 0, z1; 0, 0, z2)分布图, 以及z1(λ)与z2(λ)的关系图。从图中可以清楚地看出,纵向相干度呈对称分布,其最小值出现在一对轴对称点z1z2上,并且这个最小值点将随着拓扑荷数的增加而逐渐离开焦点。其余参量同图 1

      Figure 2.  Modulus of μ(0, 0, z1; 0, 0, z2)for different values of topological charge n and coherence parameterδ

      图 3中给出了μ(0, 0, -z; 0, 0, z)随拓扑荷数n、相干参量δ和数值孔径dNA变化的曲线图。从图中可见,在焦点区域的纵向相干度μ(0, 0, -z; 0, 0, z)会随拓扑荷数n的增加而增大,但是也会随δdNA的减小而增加。特别是,当n≥5 (见图 3a)或dNA≤0.4(见图 3c)时,纵向相干度在焦点附近约等于1。其余参量同图 1

      Figure 3.  Modulus of μ(0, 0, -z; 0, 0, z) for different values of topological charge n and coherence parameter δ

      总之,在焦点区域纵向相干度随拓扑荷数n的增大而增大,也会随相干参量δ或数值孔径dNA的减小而增大, 也就是说拓扑荷数越大,或入射光束的相干性越好(即δ越小),或数值孔径越小(即dNA值越小),都会使焦点附近光束的相干性越好。类似的研究见参考文献[12]和参考文献

    • 接下来研究位于焦平面上的一对点的光谱相干度。其中,一个点位于几何焦点上, 而另一个点位于焦平面上并与z轴有一定的距离。由于聚焦场的旋转对称性,可以假设这另一个点位于x轴上,研究相干度也不会失去一般性, 即r1=(0, 0, 0), r2=(x, 0, 0)。将(4)式和(5)式代入(3)式,可得在焦平面上聚焦场的交叉谱密度:

      $ \begin{array}{*{20}{l}} {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left[ {\begin{array}{*{20}{l}} {{W_{xx}}\left( {0, 0, 0;x, 0, 0} \right)}\\ {{W_{yy}}\left( {0, 0, 0;x, 0, 0} \right)}\\ {{W_{zz}}\left( {0, 0, 0;x, 0, 0} \right)} \end{array}} \right] = }\\ {{A^2}\left[ {\begin{array}{*{20}{l}} {{P_{n + 1, x}}\left( x \right) + {P_{n - {\rm{1}}, x}}\left( x \right) - {D_{n + 1, x}}\left( x \right) - {D_{n - 1, x}}\left( x \right)}\\ {{P_{n + 1, y}}\left( x \right) + {P_{n - {\rm{1}}, y}}\left( x \right) + {D_{n + 1, y}}\left( x \right) + {D_{n - 1, y}}\left( x \right)}\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4{P_{n + 1, x}}\left( x \right)} \end{array}} \right]} \end{array}\; $

      (17)

      其中,

      $ \begin{array}{l} \left[ \begin{array}{l} {P_{i, x}}\left( x \right)\\ {P_{i, y}}\left( x \right) \end{array} \right] = \int_0^\alpha {\int_0^\alpha {\sqrt {\cos {\theta _1}} } } \sqrt {\cos {\theta _2}} \sin {\theta _1}\sin {\theta _2} \times \\ \;\;\;\;\left[ \begin{array}{l} \sin {\theta _1}\sin {\theta _2}\\ \cos {\theta _1}cos{\theta _2} \end{array} \right]\exp \left( { - \frac{{{{\sin }^2}{\theta _1} + {{\sin }^2}{\theta _2}}}{{{d_{{\rm{NA}}}}^2{\sigma ^2}}}} \right) \times \\ \;\;\;\;\;\;{{\rm{J}}_i}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin {\theta _1}} \right){{\rm{J}}_i}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin {\theta _2}} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{{\rm{J}}_0}\left( {kx\sin {\theta _2}} \right){\rm{d}}{\theta _1}{\rm{d}}{\theta _2} \end{array} $

      (18)

      $ \begin{array}{l} \left[ \begin{array}{l} {P_{i, x}}\left( x \right)\\ {P_{i, y}}\left( x \right) \end{array} \right] = \int_0^\alpha {\int_0^\alpha {\sqrt {\cos {\theta _1}} } } \sqrt {\cos {\theta _2}} \sin {\theta _1}\sin {\theta _2} \times \\ \;\;\;\;\left[ \begin{array}{l} \sin {\theta _1}\sin {\theta _2}\\ \cos {\theta _1}cos{\theta _2} \end{array} \right]\exp \left( { - \frac{{{{\sin }^2}{\theta _1} + {{\sin }^2}{\theta _2}}}{{{d_{{\rm{NA}}}}^2{\sigma ^2}}}} \right) \times \\ \;\;\;\;\;\;{{\rm{J}}_i}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin {\theta _1}} \right){{\rm{J}}_i}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin {\theta _2}} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{{\rm{J}}_2}\left( {kx\sin {\theta _2}} \right){\rm{d}}{\theta _1}{\rm{d}}{\theta _2} \end{array} $

      (19)

      同时,可获得焦平面上的总光强表达式为:

      $ \begin{array}{l} \;\;\;\;I\left( {x, 0, 0} \right) = {A^2}\sum\limits_{m = - \infty }^{ + \infty } {\;\left\{ {\left[ {{Q_{m + 1, x}}\left( x \right) + } \right.} \right.} \\ {\left. {{Q_{m - 1, x}}\left( x \right)} \right]^2} + \left. {{{\left[ {{Q_{m + 1, y}}\left( x \right)\; + \;{Q_{m - 1, y}}\left( x \right)} \right]}^2}} \right\} \end{array} $

      (20)

      其中,

      $ \begin{array}{l} \left[ \begin{array}{l} {Q_{m + 1, x}}\left( x \right)\\ {Q_{m + 1, y}}\left( x \right) \end{array} \right] = \int_0^\alpha {\sqrt {\cos \theta } } \sin \theta \left[ \begin{array}{l} \sin \theta \\ \cos \theta \end{array} \right]\exp \left( { - \frac{{{{\sin }^2}\theta }}{{{d_{{\rm{NA}}}}^2{\sigma ^2}}}} \right) \times \\ {{\rm{J}}_m}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin \theta } \right){{\rm{J}}_{n - m + 1}}\left( {kx\sin \theta } \right){\rm{d}}\theta \end{array} $

      (21)

      $ \begin{array}{l} \left[ \begin{array}{l} {Q_{m - 1, x}}\left( x \right)\\ {Q_{m - 1, y}}\left( x \right) \end{array} \right] = \int_0^\alpha {\sqrt {\cos \theta } } \sin \theta \left[ \begin{array}{l} \sin \theta \\ \cos \theta \end{array} \right]\exp \left( { - \frac{{{{\sin }^2}\theta }}{{{d_{{\rm{NA}}}}^2{\sigma ^2}}}} \right) \times \\ {{\rm{J}}_m}\left( {{d_{{\rm{NA}}}}^{ - 1}\delta \sin \theta } \right){{\rm{J}}_{n - m - 1}}\left( {kx\sin \theta } \right){\rm{d}}\theta \end{array} $

      (22)

      因此,应用(17)式、(20)式和(6)式,就可以确定焦平面的光强分布和横向相干度。从(17)式中也可看出,交叉谱密度和横向相干度都是实数;而从(10)式中也可看出,纵向相干度是复数。

      图 3中,给出了聚焦场的光强和横向相干度μ(0, 0, 0;x, 0, 0)随拓扑荷数n、相干参量δ和数值孔径dNA变化的曲线图。从图 4a可以清楚地看出,当拓扑荷数n=1时,焦平面上有一小光斑;而当拓扑荷数n>1时,焦平面上有一小暗核,可作为光镊囚禁粒子。从图 4b~图 4f可以观察到,横向相干度会随着n, δ或者dNA的增大而减小。也就是说拓扑荷数越大,或入射光束的相干性越差(即δ越大),或数值孔径越大(即dNA值越大),都会使焦平面上光束的相干性越差,横向相干度衰减越快。此外,当n≥2或者δ≥3时(如图 4b图 4d~图 4f所示),对于图中描绘的曲线与线μ(0, 0, 0;x, 0, 0)=0相交情况,横向相干度至少有两个零点,这种点也被称为光谱相干度的相位奇点或相干奇点。在这些点上,J0相关径向偏振涡旋聚焦场与点r1=(0, 0, 0)是完全不相干的。这说明部分相干矢量场也拥有相干奇点[12-17]。图 4中其余参量同图 1

      Figure 4.  a—intensity distribution b~f—the degree of coherence μ(0, 0, 0;x, 0, 0) in the focal plane

    • 基于矢量德拜理论和相干理论,研究了J0相关径向偏振涡旋光束通过大数值孔径透镜聚焦后,在光轴和焦平面上的空间相干特性。推导出在光轴和焦平面上的相干度表达式。数值模拟结果表明,在焦点区域纵向相干度随拓扑荷数n的增大而增大,随相干参量δ或数值孔径dNA的增大而减小。特别是,当n≥5或者dNA≤0.4时,纵向相干度在焦点附近约等于1。研究还发现,焦平面的横向相干度也会随拓扑荷数n、相干参量δ或者数值孔径dNA的增大而减小。此外,焦平面的横向相干度还具有相位奇点,这意味着在这种点上J0相关矢量涡旋聚焦场与几何焦点是完全不相干的。这些研究结果对J0相关矢量涡旋光束在许多领域的应用具有重要意义。

参考文献 (23)

目录

    /

    返回文章
    返回