高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大模场低损耗光子晶体光纤的研究与设计

吕欢祝 余明芯 钟文博 张克非

引用本文:
Citation:

大模场低损耗光子晶体光纤的研究与设计

    作者简介: 吕欢祝(1998-),男,大学本科生,现主要从事大模场光子晶体光纤方面的研究与设计.
    通讯作者: 张克非, zhangkefeijike@163.com
  • 基金项目:

    国家级大学生创新创业训练计划资助项目 201910619021

    四川省高等教育人才培养质量和教学改革项目 19sjjg21

    四川省科技厅重点研发资助项目 2018GZ0212

  • 中图分类号: TN253

Research and design of large-mode area low loss photonic crystal fiber

    Corresponding author: JIANG Huilan, zhangkefeijike@163.com
  • CLC number: TN253

  • 摘要: 为了改善高功率光纤激光器的非线性效应,提出并设计了一种新型的无源、单模、低损耗、大模场的光子晶体光纤结构。利用时域有限差分法并结合完美匹配层边界条件,分析了光子晶体光纤有效模场面积的影响因素,得到光子晶体光纤性能随波长及几何结构的变化规律,从而得到实现更大模场面积的结构参量。结果表明,保证单模传输的情况下,在1.064μm波长处,优化设计的大模场光子晶体光纤有效模场面积可达3118.4μm2,对应的非线性系数可低至5.68×10-5 m-1·W-1,限制损耗可降低到4.55×10-7 dB·m-1。该光纤具备低损耗、低非线性和大模场面积等特性,在实现光子晶体光纤激光器高功率、高光束品质激光输出方面具有重要应用。
  • Figure 1.  Schematic diagram of optimized design of LMA-PCF cross section

    Figure 2.  Performance of PCF affected by the change of wavelength

    a—effective refractive index and effective mode field area b—confinement loss

    Figure 3.  Performance of PCF affected by the change of d

    a—effective refractive index b—effective mode field area c—confinement loss

    Figure 4.  Performance of PCF affected by the change of d1

    a—effective refractive index b—effective mode field area c—confinement loss

    Figure 5.  Performance of PCF affected by the change of Λ

    a—effective refractive index b—effective mode field area c—confinement loss

    Figure 6.  Performance of the optimized LMA-PCF affected by the change of wavelength

    a—confinement loss b—effective mode field area and nonlinear coefficient

    Figure 7.  Simulation results of COMSOL

    a—mode field and energy of PCF transverse electric field component b—3-D energy potential field of PCF

  • [1]

    WANG Ch Ch, ZHANG F, WU G Zh. Study on mode properties of asymptotic terahertz porous photonic crystal fiber[J]. Laser Technology, 2019, 43(6): 768-772(in Chinese).
    [2]

    ADEMGIL H. Highly birefringent large mode area photonic crystal fiber-based sensor for interferometry applicatiy applications[J]. Mo-dern Physics Letters, 2016, B30(36): 1650422.
    [3]

    DING X Z, YANG H Zh, QIAO X G, et al. Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid[J]. Applied Optics, 2018, 57(9): 2050-2056.
    [4]

    ZHU H X, YE T, ZHANG K F. Research on high sensitive pressure sensing characteristics of photonic crystal fiber[J]. Laser Technology, 2019, 43(4): 511-516(in Chinese).
    [5]

    XIE L H, XU D P, LI M Zh, et al. Effects of structural parameters on mode field distribution of photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100607(in Chinese).
    [6]

    MARKOS C, VLACHOS K, KAKARANTZAS G. Guiding and thermal properties of a hybrid polymer-infused photonic crystal fiber[J]. Optical Materials Express, 2012, 2(7): 929-941.
    [7]

    GUO Y Y, HOU L T. Design of all-solid-state octagonal large mode field photonic crystal fibers[J]. Journal of Physics, 2010, 59(6): 4036-4041(in Chinese).
    [8]

    GENG P Ch, HOU L T, HAN W T, et al. Design of large mode area Yb3+-doped seven-core photonic crystal fibers[J]. Acta Optica Sinica, 2010, 30(9): 2719-2723(in Chinese).
    [9]

    COSCELLI E, MOLARDI C, MASRURI M, et al. Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding[J]. Optics Express, 2014, 22(8): 9707-9714.
    [10]

    REENA D, SAINI T S, KUMAR A, et al. Rectangular-core large-mode-area photonic crystal fiber for high power applicatins: Design and analysis[J]. Applied Optics, 2016, 55(15): 4095-4100.
    [11]

    YUE Zh, ZHENG H B, CHEN M Y, et al. Low bending loss large mode-field bandgap optical fibers based on mode coupling [J]. Journal of Optoelectronics·Laser, 2017, 28(8): 843-848(in Ch-inese).
    [12]

    KABIR S, RAZZAK S M A. An enhanced effective mode area fluorine doped octagonal photonic crystal fiber with extremely low loss[J]. Photonics and Nanostructures—Fundamentals and Applications, 2018, 30(7): 1-6.
    [13]

    HAN J, LIU E, LIU J. Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss [J]. Journal of the Optical Society of America, 2019, A36(4): 533-539.
    [14]

    QIN Y, YANG H, JIANG P, et al. Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding[J]. Applied Optics, 2018, 57(14): 3976-3982.
    [15]

    OLYAEE S, TAGHIPOUR F. Doped-core octagonal photonic crystal fiber with ultra-flattened nearly zero dispersion and low confinement loss in a wide wavelength range[J]. Fiber and Integrated Optics, 2012, 31(3): 178-185.
    [16]

    SHARMA M, DIXIT V, KONAR S, et al. Endlessly single-mode photonic crystal fiber with high birefringence for sensing applications[J]. Modern Physics Letters, 2020, B34(6): 2050077.
    [17]

    UDDIN S, SINGH D K. A solid silica core based non-linear hybrid PCF with low confinement loss[J]. Optik, 2016, 127(22): 10399-10411.
    [18]

    KUMAR A, SAINI T S, NAIK K D, et al. Large-mode-area single-polarization single-mode photonic crystal fiber: Design and analysis[J]. Applied Optics, 2016, 55(19): 4995-5000.
    [19]

    EFTEKHARINIA B, PARVIN P, HABIBIYAN H, et al. Analysis of amplification properties of a photonic crystal fiber[J]. Optik, 2014, 125(4): 1565-1571.
    [20]

    XUE L, ZHANG Y N, ZHU Y Y, et al. Optimum design of ultra-low loss, low nonlinearity, flat dispersion photonic crystal fibers [J]. Acta Photonica Sinica, 2018, 47(11): 1106005(in Chin-ese).
    [21]

    KABIR S, KHANDOKAR M R H, KHAN M A G. Design of triangular core LMA-PCF with low-bending loss and low non-linearity for laser application[J]. Optics & Laser Technology, 2016, 81(15): 84-89.
  • [1] 姜凌红侯蓝田邹金红侯宇 . 平坦色散低限制损耗光子晶体光纤的设计. 激光技术, 2011, 35(1): 61-64. doi: 10.3969/j.issn.1001-3806.2011.01.018
    [2] 宋德君谢康肖峻 . 基于有限元光子晶体光纤的模场与色散分析. 激光技术, 2012, 36(1): 111-113,117. doi: 10.3969/j.issn.1001-3806.2012.01.028
    [3] 王润轩 . 高非线性光子晶体光纤接续损耗的数值研究. 激光技术, 2008, 32(3): 302-304.
    [4] 陈娟葛文萍王晓薇 . 八边形低色散高非线性光子晶体光纤的设计. 激光技术, 2012, 36(4): 480-484. doi: 10.3969/j.issn.1001-806.2012.04.011
    [5] 奚小明陈子伦刘诗尧侯静姜宗福 . 光子晶体光纤与普通光纤的耦合熔接. 激光技术, 2011, 35(2): 202-205. doi: 10.3969/j.issn.1001-3806.2011.02.017
    [6] 黄建军李港陈檬庞庆生毕向军 . 光子晶体光纤色散特性的数值分析. 激光技术, 2006, 30(4): 432-435.
    [7] 张学典陈楠聂富坤逯兴莲常敏 . 基于结构和填充的光子晶体光纤色散分析. 激光技术, 2018, 42(1): 48-52. doi: 10.7510/jgjs.issn.1001-3806.2018.01.010
    [8] 王润轩 . 色散补偿双芯光子晶体光纤的数值研究. 激光技术, 2008, 32(6): 576-578,589.
    [9] 温芳门艳彬孟义昌张书敏 . 基于光子晶体光纤的高斯脉冲光谱压缩数值研究. 激光技术, 2015, 39(1): 65-70. doi: 10.7510/jgjs.issn.1001-3806.2015.01.013
    [10] 蔡辉剑沈淑娟刘献省 . 掺Yb3+铝硅酸盐玻璃纤芯的光子晶体光纤. 激光技术, 2017, 41(5): 759-763. doi: 10.7510/jgjs.issn.1001-3806.2017.05.028
    [11] 刘旭安程和平焦铮 . 双孔单元四边形晶格光子晶体光纤特性的研究. 激光技术, 2019, 43(1): 48-52. doi: 10.7510/jgjs.issn.1001-3806.2019.01.010
    [12] 朱虹茜叶涛张克非 . 光子晶体光纤高灵敏度压力传感特性研究. 激光技术, 2019, 43(4): 511-516. doi: 10.7510/jgjs.issn.1001-3806.2019.04.014
    [13] 成纯富王又青别业广 . 双零色散点光子晶体光纤中红移辐射的产生. 激光技术, 2010, 34(1): 120-123. doi: 10.3969/j.issn.1001-3806.2010.01.034
    [14] 孙太龙励强华刘晶会刘颖 . 高非线性色散平坦光子晶体光纤的理论研究. 激光技术, 2008, 32(3): 330-333.
    [15] 余先伦姜友嫦宋明成 . 压力作用对实芯光子晶体光纤特性影响分析. 激光技术, 2008, 32(2): 187-190,193.
    [16] 钱诗婷廖秋雨高翔张克非 . 填充型增敏式光子晶体光纤压力传感器结构. 激光技术, 2021, 45(2): 224-228. doi: 10.7510/jgjs.issn.1001-3806.2021.02.017
    [17] 简多刘敏何丁丁李丹廖洲一 . 高非线性平坦色散光子晶体光纤的研究. 激光技术, 2013, 37(2): 187-190. doi: 10.7510/jgjs.issn.1001-3806.2013.02.012
    [18] 廖洲一刘敏钱燕何丁丁简多 . 八角格子色散补偿光纤. 激光技术, 2013, 37(4): 506-510. doi: 10.7510/jgjs.issn.1001-3806.2013.04.020
    [19] 李爱萍郑义张兴坊孙启兵李坤 . 反常色散区抽运光子晶体光纤产生的超连续谱. 激光技术, 2008, 32(1): 50-52,112.
    [20] 李娟杨琳赵楚军文双春范滇元 . 新型多芯光纤的模场特性分析. 激光技术, 2009, 33(5): 529-531,534. doi: 10.3969/j.issn.1001-3806.2009.05.015
  • 加载中
图(7)
计量
  • 文章访问数:  7831
  • HTML全文浏览量:  6825
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-15
  • 录用日期:  2020-03-16
  • 刊出日期:  2021-03-25

大模场低损耗光子晶体光纤的研究与设计

    通讯作者: 张克非, zhangkefeijike@163.com
    作者简介: 吕欢祝(1998-),男,大学本科生,现主要从事大模场光子晶体光纤方面的研究与设计
  • 1. 西南科技大学 理学院,绵阳 621010
  • 2. 西南科技大学 计算机科学与技术学院,绵阳 621010
基金项目:  国家级大学生创新创业训练计划资助项目 201910619021四川省高等教育人才培养质量和教学改革项目 19sjjg21四川省科技厅重点研发资助项目 2018GZ0212

摘要: 为了改善高功率光纤激光器的非线性效应,提出并设计了一种新型的无源、单模、低损耗、大模场的光子晶体光纤结构。利用时域有限差分法并结合完美匹配层边界条件,分析了光子晶体光纤有效模场面积的影响因素,得到光子晶体光纤性能随波长及几何结构的变化规律,从而得到实现更大模场面积的结构参量。结果表明,保证单模传输的情况下,在1.064μm波长处,优化设计的大模场光子晶体光纤有效模场面积可达3118.4μm2,对应的非线性系数可低至5.68×10-5 m-1·W-1,限制损耗可降低到4.55×10-7 dB·m-1。该光纤具备低损耗、低非线性和大模场面积等特性,在实现光子晶体光纤激光器高功率、高光束品质激光输出方面具有重要应用。

English Abstract

    • 随着光纤激光器功率的不断提高,诸如光纤传输过程中的非线性效应和光学损伤等物理机制在一定程度上限制了高功率光纤激光器的发展。增大光纤的模场面积是改善上述问题的重要手段[1-3]。光子晶体光纤(photonic crystal fiber, PCF)结构设计相对灵活,通过调整其结构参量即可对模场面积、限制损耗、单模传输等特性进行优化[4-5]。此外,PCF相较于普通光纤具有更良好的机械性能、热力学性能,已成为优化光纤模场面积的重点研究领域[6]

      2010年, 燕山大学的GUO和GENG等人[7-8]分别设计了模场面积可达2000μm2和3702μm2的大模场光子晶体光纤(large-mode area photonic crystal fiber, LMA-PCF),但其限制损耗均高于0.1dB·m-1。2014年, COSCELLI等人[9]提出了一种掺Tm的大模场光子晶体光纤,该光子晶体光纤能在超过300W/m的热负荷下获得宽带单模传输并且模场面积可达2500μm2。2016年, REENA等人[10]设计了一种矩形芯大模面积光子晶体光纤结构,该PCF的模场面积可达2147μm2,但是由于其设计参量多等因素,导致PCF的制备相对困难。2017年, YUE等人[11]提出了一种大模场带隙光子晶体光纤,因其具有较宽的带隙可同时支持基模和高阶模的传输,然而其限制损耗仍然没有显著的减小。2018年, KABIR等人[12]提出了一种八边形大模场光子晶体光纤,其色散可在一定波长范围内实现平坦控制,而其模场面积仍有较大的提升空间。2019年, HAN等人[13]提出了一种圆形梯度直径光子晶体光纤,其支持无限制的单模传输并且模场面积可达到3110μm2

      综上所述,近年来国内外在LMA-PCF的设计方面已取得了实质性进展,但仍然存在模场面积较小、限制损耗较高等性能问题。针对上述情况,本文中提出了一种无源大模场低损耗单模光子晶体光纤的优化设计,利用PCF可灵活设计的结构特点,将纤芯区域设计为正九边形,包层区域保持传统的正六边形,有效抑制了传统光纤激光器的热效应和非线性效应。与传统光纤相比,这种LMA-PCF具备较大的模场面积,其限制损耗和非线性效应等也得到了较好的控制。

    • 优化设计的LMA-PCF横截面如图 1所示。用石英(SiO2)作为基底材料,包层区域为正六边形周期性分布的小空气孔,最外层圆环表示PCF完美匹配层(perfectly matched layers, PML)吸收边界条件,近芯区域分别引入9个大空气孔和9个小空气孔,构成正九边形周期性结构。其中, R1为PCF的直径,R2为完美隔离层外径,Λ为空气孔间距,d为包层周期性排列空气孔直径,d1d2分别为芯区大空气孔和小空气孔直径,空气折射率为1,基底材料SiO2折射率为1.45[14]

      Figure 1.  Schematic diagram of optimized design of LMA-PCF cross section

      限制损耗是PCF优化设计的一个关键参量,当激光器选取PCF作为其传输光纤时,PCF限制损耗的大小直接影响激光器的输出功率,PCF基模限制损耗的表达式为[15]

      $ L = \frac{{20}}{{{\rm{In}}10}}\frac{{2\pi }}{\lambda }{\rm{Im}}\left( {{n_{{\rm{eff}}}}} \right)\left( {{\rm{dB}} \cdot {{\rm{m}}^{ - 1}}} \right) $

      (1)

      式中,Im(neff)是基模有效模式折射率的虚部[16]。从(1)式可得出,PCF的限制损耗与有效模式折射率虚部具有线性关系。作为本文中的研究重点,PCF的模场面积能够表示光波的集中密度,且与光纤的非线性系数等密切相关,PCF的非线性系数可以表示为[17]

      $ g\left( \lambda \right) = \frac{{2{\rm{ \mathit{ π} }}{n_2}}}{{\lambda {A_{{\rm{eff}}}}}} $

      (2)

      式中,材料的非线性系数[18]n2=3.0×10-20m2·W-1。有效模场面积Aeff可表示为[19]

      $ {A_{{\text{eff}}}} = \frac{{{{\left( {\iint {{{\left| E \right|}^2}}{\text{d}}x{\text{d}}y} \right)}^2}}}{{\iint {{{\left| E \right|}^4}}{\text{d}}x{\text{d}}y}} $

      (3)

      式中,E为PCF的横向电场分量[20],它与PCF的光输入波长和结构参量等有关。由(3)式可以看出,扩大PCF截面的横向电场分量可以获得LMA-PCF。

    • 选取d=2μm,Λ=15μm,d1=14μm,d2=5μm保持不变,改变波长的值,从0.84μm以0.04μm为步长增加到1.6μm。受波长变化的影响,有效折射率、有效模场面积的变化趋势曲线如图 2a所示。从图 2a可以分析出,随着波长的增加,PCF的有效模式折射率呈下降趋势,这是由于PCF对短波长的模式约束能力较强,对长波长的模式约束能力较弱,其有效模场面积随着波长的增加呈线性增长。受波长变化的影响,束缚损耗的变化趋势曲线如图 2b所示。可以看出,伴随波长的持续增加,束缚损耗明显增大。分析波长对光纤性能的影响,对分析一定范围波长处PCF的有效模场面积及设计特定波长工作的PCF有着重要的参考意义。

      Figure 2.  Performance of PCF affected by the change of wavelength

    • 选取Λ=15μm,d1=15μm,d2=5μm维持不变,对包层空气孔直径d的值进行调整,从1μm以1μm为步长增加到5μm。受包层空气孔直径d变化的影响,有效模式折射率的变化如图 3a所示。可以看出,伴随包层空气孔直径d的持续增加,PCF的有效模式折射率逐渐减小。受包层空气孔直径d变化的影响,有效模场面积的变化曲线如图 3b所示。可以看出,伴随包层空气孔直径d的增加, PCF的有效模场面积在不断地减小,且波长1.55μm处的有效模场面积要大于波长1.064μm处的有效模场面积,原因是长波长模式更容易进入到PCF的包层,有利于增大PCF的模场面积。受包层空气孔直径d变化的影响,限制损耗的变化如图 3c所示。可以看出,包层空气孔直径d对于限制损耗的影响不大。因此,参量d对实现PCF更大的模场面积具有一定影响。

      Figure 3.  Performance of PCF affected by the change of d

    • 选取Λ=15μm,d=2μm,d2=5μm保持不变,改变芯区空气孔直径d1的值,从11μm以1μm为步长增加到15μm。图 4a中给出了有效模式折射率随芯区空气孔直径d1的变化。可以看出, 随着芯区空气孔直径d1的不断增加,PCF的有效模式折射率呈现减小趋势,但减小的程度不是非常显著, 因此芯区空气直径d1对PCF有效模式折射率的影响相对较弱。图 4b中给出了有效模场面积随芯区空气孔直径d1的变化。可以看出,伴随芯区空气孔直径d1的持续增加,PCF的有效模场面积开始表现出下降的趋势。限制损耗的变化曲线如图 4c所示。可以看出,伴随芯区空气孔直径d1的持续增加,束缚损耗逐渐减小,这是由于随着d1的增加,空气填充比不断增大,模场逐渐向纤芯处集中。考虑到模场面积和束缚损耗对d1的依赖,因此选取芯区空气孔直径d1=11μm作为最优设计参量。

      Figure 4.  Performance of PCF affected by the change of d1

    • 选取d=2μm, d1=15μm, d2=5μm保持不变,改变空气孔间距Λ的值,从15μm以5μm为步长增加到35μm。受空气孔间距Λ变化的影响,有效模式折射率的变化如图 5a所示。可以看出,随着空气孔间距Λ的不断增加,PCF的有效模式折射率呈现增加的趋势。图 5b是关于有效模场面积伴随空气孔间距Λ的变化趋势曲线。可以看出,随着空气孔间距Λ的不断增大,有效模场面积也明显增大,这是因为空气孔间距Λ从15μm增大到35μm的过程中,基模电场表面能量随空气孔间距的增大逐渐向包层区域扩散。图 5c则是限制损耗伴随空气孔间距Λ的趋势曲线。可以看出,伴随空气孔间距Λ的增大限制损耗也逐渐增加。为平衡大模场面积、低限制损耗的双边需求,选取Λ=15μm。

      Figure 5.  Performance of PCF affected by the change of Λ

    • 综合来看,借助时域有限差分法(finite difference time domain, FDTD)结合PML边界条件对本文中设计的PCF结构参量进行优化设计,结果表明,模场面积受空气孔间距的影响较大,包层空气孔直径对非线性优化起到主导作用,而限制损耗主要受芯区空气孔直径和空气孔间距的影响。经过对非线性效应、限制损耗、有效模场面积等多个相关指标的综合分析,选取PCF的结构指标为: 包层空气孔直径d=3μm、芯区大空气孔直径d1=11μm、芯区小空气孔直径d2=5μm、空气孔间距Λ=15μm,图 6a展示了其限制损耗伴随波长的变化情况。可以看出, 在整个波长变化的范围内其限制损耗始终小于10-6dB·m-1,且在1.064μm波长时,其限制损耗可以低至4.55×10-7dB·m-1,并且在整个波长扫描内,限制损耗的变化保持相对稳定的状态。受波长变化的影响,本文中优化设计后的PCF有效模场面积Aeff和非线性系数γ的变化趋势曲线如图 6b所示。可以得出, 模场面积Aeff与非线性系数γ表现出反比关系。在1.064μm波长处,本文中优化设计的PCF的有效模场面积Aeff可达3118.4μm2,其对应的非线性系数可低至5.68×10-5m-1·W-1,呈现了大模场面积、低非线性效应的优良特性。图 7a中给出了通过COMSOL仿真得到的基模横向电场分量分布情况。可以看出, 本文中设计的LMA-PCF基模电场模式更多地集中于纤芯区域,有利于实现PCF的大模场面积。图 7b中给出了通过COMSOL仿真得到的3维能量势场分布情况。可以看出,本文中优化设计LMA-PCF的基模纤芯区域的能量较普通PCF更强,并且在纤芯区域的有效模式折射率为最初设置的1.45的情况下,本文中设计的LMA-PCF的基模有效模式折射率为1.4496,二者已非常接近。根据PCF归一化频率理论公式[21],该光纤的归一化频率随波长的改变呈无规律变化趋势,但始终都小于π,保证了该LMA-PCF的单模传输。

      Figure 6.  Performance of the optimized LMA-PCF affected by the change of wavelength

      Figure 7.  Simulation results of COMSOL

    • 利用石英作为光纤的基底材料,设计了一种新型LMA-PCF。通过FDTD结合PML完美匹配层边界条件,对该LMA-PCF的相关性能与波长和光纤结构参量之间的关系进行了分析。结果表明,模场面积受空气孔间距的影响较大,包层空气孔直径对非线性优化起到主导作用,而限制损耗主要取决于芯区空气孔直径和空气孔间距。设计的LMA-PCF在1.064μm波长处限制损耗可低至4.55×10-7dB·m-1,模场面积可达3118.4μm2,对应的非线性系数低至5.68×10-5 m-1·W-1,并且保证了单模传输特性。

参考文献 (21)

目录

    /

    返回文章
    返回